

The 8th International Conference on Coherent Multidimensional Spectroscopy

CMDS 2016

June 29 - July 1 2016, Groningen, the Netherlands

Sponsors

faculty of mathematics and natural sciences

zernike institute for advanced materials

KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN

FOM

acal bfi European leader in advanced technology solutions

Stichting Physica

Structural Dynamics co-published by AIP Publishing ACA

books and more

Welcome Message

We are pleased to welcome the 8th International Conference on Coherent Multidimensional Spectroscopy, CMDS 2016, to Groningen, the Netherlands! This meeting follows the CMDS conferences in Eugene, Berlin, Minneapolis, Kyoto, Rigi-Kulm, Madison, and Seoul.

The bi-annual CMDS conference is a major international forum for discussion of the latest and most important results in multidimensional optical spectroscopy. The meetings bring together scientists from different fields of science and serve as a venue for exchanging ideas between theorists and experimentalists. CMDS has become the premier event for researchers developing and applying stateof-the-art multi-dimensional optical, infrared, and

THz spectroscopic methods to address a vast variety of problems in chemistry, biology, physics, and material science.

Groningen is a vibrant, one thousand year old city. With its comprehensive university, founded in 1614, it combines a rich academic tradition with an attractive city life, characterized by culture, history, and an exciting social scene.

We wish you a fruitful conference and pleasant stay in Groningen!

Thomas la Cour Jansen Maxim S. Pshenichnikov Conference Co-chairs

For further information, visit the conference website at http://CMDS2016.ORG

Tir	ne	Tuesday, June 28	Wednes	day, June 29	Tir	ne
	00		Registration		08	00
08	30		Opening			30
	40		Chemistry /	We01 Kubarych		40
	00		Catalysis	We02 Bredenbeck		00
09	_			We03 Xiong	09	
	40		Chair: Carlos R.	We04 Vöhringer		40
	00		Baiz	We05 Wright		00
10			Coff	ee break	10	20
	40					40
	00		Biomolecules I	We06 Chergui	11	00
11			(DNA)	We07 Hunt		
	40		Chair: Sander	We08 Prokhorenko		40
	00		Woutersen	We09 Marcus		00
12	20				12	
	40			unch		40
	00				-	00
13	_			We10 Zanni	13	20
	40		Materials I			40
	00		Chair: Steven	We11 De Sio		00
14	20		T. Cundiff	We12 Kwak	14	20
	40			We13 Ryu	⊢	40
	00		Coff	ee break		00
15	20		Methods I		15	20
	40		methoust	We14 Brixner		40
	00	D e eletretie e	Chair: R.J.	We15 Davis		00
16	20	Registration	Dwayne Miller	We16 Cina	16	20
	40			We17 El Khoury		40
17			Dinner (on vour own)	17	00
18	00	Reception Dinner (on your own)			18	00
19	00				19	00
20	00	Dinner (on your own)	Poster session I		20	00
21	00		(odd	numbers)	21	00
22	00				22	00

Color coding Official Refreshments Social	Session topic	Invited talk	Contributed talk	Poster session
--	------------------	-----------------	------------------	----------------

Tin	ne	Thurse	rrsday, June 30 Friday, July 1 Tim		ne		
	00						00
08	20					08	20
	40	Water	Th01 Backus	Light	Fr01 Ogilvie		40
	00		Th02 Inoue	Harvesting	Fr02 Paleček	_	00
09	20	Chair: Huib J.	Th03 Tokmakoff		Fr03 Pullerits	09	-
	40 00	Bakker	Th04 Tominaga	Chain Tan ź	Fr04 Heisler		40
10			Th05 Elsaesser	Chair: Tomáš Mancal	Fr05 Tan Fr06 Collini	10	00
10	20 40	Coffee break		Wallear	Fr07 Shi	10	20 40
	00				1107 511		40 00
11		lons	Th06 Hamm	Deste		11	
	40	Chair: Amber	Th07 Zhuang		r session ll numbers)		40
	00	T. Krummel	Th08 Berg	(crei	nambersy		00
12	20		Th09 Garrett-Roe			12	20
	40	Lunch	IOC mosting	Lunch			40
13	00	Lunch + IOC meeting		•	unch		00
			Th10 Bakulin		Fr08 Cho	13	
	40	Materials II		Methods II			40
	00	Chair: Tobias Brixner	Th11 Grégoire	Chair: Arend G.	Fr09 Kemlin		00
14	20		Th12 Roberts	Dijkstra	Fr10 Krummel	14	
	40 00		Th13 Cundiff		Fr11 Gelin	_	40 00
15	20	Coffee break Closing remarks		ee break Closing remarks		15	
13	20 40	Biomolecules	Th14 Helbing	Confe	erence end	15	40
\vdash	00	II (Proteins)	Th15 Rezus			-	00
16	20	Chair: Jianping	Th16 Moran			16	20
	40	Wang	Th17 Klug				40
17	00	Boat trip - Excursion				17	00
18	00	budt tr	ip - Excursion			18	00
19	00					19	00
20	00	Confe	rence dinner			20	00
21	00	conten				21	
22	00					22	00

Color coding Official Refr	reshments Social	Session topic	Invited talk	Contributed talk	Poster session
-------------------------------	------------------	------------------	-----------------	------------------	-------------------

Tuesday, June 28

15:30	Registration <i>Location: "De Oosterpoort", Trompsingel 27</i>
18:00	Reception
	Location: Academigebouw, Broerstraat 5
	This reception is offered to you by the University of Groningen, the Municipality of Groningen and the Province of Groningen.

Wednesday, June 29

08:00	Registration

08:30 Opening

Chemistry / Catalysis

Chair: Carlos R. Baiz

08:40 Photocatalysis Reaction Dynamics Probed in Operando with 2DIR We01

Kevin J. Kubarych

University of Michigan, USA

2D-IR can be used to track structural dynamics as well as mechanistic connectivity in functional photocatalytic reactors. Non-equilibrium 2D-IR, both transient and at steady-state reveals ultrafast intermolecular charge transfer, solvent exchange and catalyst dimerization.

09:10

How Catalysts Control Substrate Structure

We02 Jens Bredenbeck

Johann Wolfgang Goethe-Universität, Germany

The stereochemistry of substrate-catalyst-complexes in reaction mixtures is resolved by polarization-dependent 2D-IR spectroscopy and DFT computations, shedding light on the controversial reaction mechanism of an important textbook example of enantioselective synthesis. The influence of thermal fluctuations on 2D-IR structure determination is assessed by temperature-dependent measurements and *ab initio* MD simulations.

Chemistry / Catalysis

Chair: Carlos R. Baiz

09:30 Measuring Orientation and Surface Interactions of Heterogeneous Catalysts using 2D SFG We03

Wei Xiong

University of California-San Diego, USA

Using 2D SFG spectroscopy, we characterize a CO_2 reduction catalyst on gold surface. We find that by analyzing lineshape of cross-peaks, the interactions between vibrational modes and gold surface can be revealed. Further, we demonstrate a general method to measure the molecular orientation and its distribution on surface.

09:50

Ultrafast Dynamics of a Ferracyclobutadiene

We04 Peter Vöhringer

University of Bonn, Germany

The photo-induced primary processes of a carbonyl-bearing ferracyclobutadiene are revealed by ultrafast time-resolved mid-infrared spectroscopy. Following optical excitation, a CO-dissociation occurs within several tens of picoseconds via barriercrossing on the electronically excited state. Solvent binding by the vacancy of a coordinatively unsaturated intermediate is faster than the initial CO-loss.

10:10

Fully Coherent Electronic-Vibrational Spectroscopy of Transition Metal Complexes

We05 John C. Wright

University of Wisconsin-Madison, USA

Three independently tunable OPAs create multiple quantum coherences (MQCs) using fully coherent pathways involving vibrational and electronic states. The MQCs create 3D electronic/vibrational spectra that can serve as multidimensional spectral signatures of transition metal complexes in complex biological systems. We report experiments using different methodologies to probe different biological systems.

10:30 Coffee break Sponsored by Coherent

Biomolecules I (DNA) Chair: Sander Woutersen

Ultrafast 2D UV and Visible Spectroscopy of (Bio)Chemical Systems We06

Majed Chergui

Ecole Polytechnique Fédérale de Lausanne, Switzerland

We review our recent studies, using 2D transient absorption deep-UV spectroscopy, on electron transfer in hemoproteins and on the charge carrier dynamics in Titanium dioxide. We then present our recent studies using visible coherent 2D on the energy transfer in diporphyrins and on pentacene crystals.

11:30

11:00

Long-Range Vibrational Dynamics are Directed by Watson-Crick Base-Pairing in Duplex DNA

We07 Neil T. Hunt

University of Strathclyde, UK

Ultrafast two-colour 2D-IR spectroscopy has been used to study vibrational coupling interactions and energy relaxation pathways linking DNA bases with the sugar phosphate backbone. We show that vibrational relaxation proceeds via modes located on the deoxyribose unit, while helix formation leads to unique coupling of base and phosphate vibrations.

11:50

Two-Dimensional And Transient Absorption Spectroscopies of Single-Stranded DNA in The Deep UV

We08 Valentyn I. Prokhorenko

Max Planck-Institute for the Structure and Dynamics of Matter, Germany

Ultrafast electronic dynamics in DNA and its nucleobases are studied with 2D-UV photon echo and transient absorption spectroscopies, covering a spectral range of 250-300 nm. Increasing the DNA length leads to significant changes in their 2D spectra. Biomolecules I (DNA) Chair: Sander Woutersen

Chair: Steven T. Cundiff

12:10

Studies of Vibronically Coupled Molecular Dimers in DNA by Timeresolved Two-Dimensional Fluorescence Spectroscopy

We09

Andrew H. Marcus University of Oregon, USA

Two-dimensional fluorescence spectroscopy (2DFS) is used to study the local conformations and excited state dynamics of pairs of cyanine dyes, which are sitespecifically incorporated into the sugar-phosphate backbones of DNA replication fork constructs. A vibronic coupling model describes time-resolved 2DFS, circular dichroism (CD), and linear dichroism (LD) of these systems.

12:30 Lunch

13:30

We10 Martin T. Zanni

University of Wisconsin-Madison, USA

Light Spectroscopy at 100 Khz

Materials I

Exciton transport in thin films made from semiconducting carbon nanotubes was studied with a new 2D WL spectrometer operating at a repetition rate of 100 kHz. Exciton lifetimes are found to scale with the rate of energy transfer, which has implications for working devices.

Ultrafast Exciton Transport Studied with 2D White-

14:00

Coherent Polaron Pair Formation in a Semiconducting Polymer

We11

Antonietta De Sio

Carl von Ossietzky Universität, Germany

Combining high-time resolution two-dimensional electronic spectroscopy with detailed theoretical simulations, we investigate the initial dynamics of excitons and polaron pairs in a semiconducting polymer thin film. We show that coherent vibronic coupling promotes charge delocalization and results in long-lasting coherent oscillatory dynamics of strongly coupled excitons and polaron pairs.

Materials I

Chair: Steven T. Cundiff

14:20

Equilibrium Dynamics in Electrolytes of Li-Ion BatteryStudied by Two-Dimensional IR Spectroscopy We12

Kyungwon Kwak

Korea University, Korea

The solvation structures and dynamics of Li ions in liquid electrolyte play an essential role to Li-based battery performance. To mimic commercial electrolyte, Li+ were dissolved in diethylcarbonate and its solvation behavior was observed with time-resolved IR spectroscopies. 2D-IR experiments show that there is fast equilibrium solvation dynamics around Li-ion.

14:40

Optical Inhomogeneity from 2D Spectra vs. Static Size Dispersion in an Ensemble of PbSe Nanocrystals

We13 Jisu Ryu

University of Colorado, USA

The optical inhomogeneity of a PbSe QD sample is determined using 2DFT spectroscopy with the nodal line slope method and compared to size dispersions measured with TEM. Comparison between the two suggests that either TEM overestimates the size dispersion or the optical inhomogeneity does not directly reflect the size dispersion.

15:00

Coffee break

Sponsored by Fastlite

Methods I

Chair: R.J. Dwayne Miller

15:30

New 2D Methods for Studying Molecular Interactions

We14 Tobias Brixner

Universität Würzburg, Germany

We developed several methods concerning the study of molecular interactions: 1) A theorem states conditions for the unique inversion of electronic 2D spectra toward the complete population-transfer matrix; 2) we present 2D spectroscopy of exciton—exciton interactions; 3) we introduce 2D spectroscopy on interaction-free molecular beams using mass-resolved ion detection.

Wednesday, June 29

		Methods I	Chair: R.J. Dwayne Miller
16:00		Isolating Specific Pathways in 2D Spectroscopy	Double Quantum
	We15	Jeffrey A. Davis	
		Swinburne University of Technology,	Australia
	to filter o analogou quantum	ning spectral amplitude shaping and s out unwanted signal contributions in s to techniques in multidimensional N wells this allows removal of broad of the mixed 2-exciton states.	double quantum 2D spectra, IMR. In coupled semiconductor
16:20	We16	Relating Action- and Transmis Multidimensional Wave-Pack	
	WEID	Jeffrey A. Cina	
		University of Oregon, USA	
	detected mixing sig methods	rt on our recent comparative studio wavepacket interferometry and he gnals. Special attention is given to the to render more nearly equivalen nonlinear optical signals.	terodyne-detected four-wave- e possible use of pulse-shaping
16:40		Femtosecond Redox-Induced Spectroscopy of Proteins and	
	We17	Youssef El Khoury	
		Institut de Physique et Chimie des Mo	atériaux de Strasbourg, France
	redox-inc of redox- transfer a	gy to redox-induced FTIR difference luced 2D-IR difference spectroscopy to sensitive vibrational modes. Lifetimes and spectral diffusion can be investig logy and first applications including d.	o investigate ultrafast dynamics s, couplings, vibrational energy ated under redox control. The
17:00		Dinner (on your own)	
19:00		Poster session I (odd numbers	

Water

Chair: Huib J. Bakker

08:30

Energy Transfer in Water Underneath Oppositely Charged Surfactants

Th01

Ellen H. G. Backus

Max Planck Institute for Polymer Research, Germany

Energy transfer in water underneath both negatively and positively charged surfactants is studied with two-dimensional vibrational sum frequency generation spectroscopy. For the negatively charged surfactant, two distinct water sub-ensembles are identified with subpicosecond energy transfer between them. In contrast, water underneath a positively charged surfactant behaves like bulk water.

09:00

2D Heterodyne-Detected VSFG Spectroscopy of a Model Membrane Interface

Th02 Ken-ichi Inoue

RIKEN, Japan

2D HD-VSFG is applied for studying a zwitterionic lipid/water interface as a model membrane interface. The transient spectra in the OH stretch region reveal the presence of "H-down" oriented water associated with a choline group in addition to "H-up" oriented water in the vicinity of a phosphate group.

09:20

The Dynamics of Excess Protons in Liquid Water Viewed through 2D IR Spectroscopy

Th03 Andrei Tokmakoff

The University of Chicago, USA

We investigate the dynamics of protons in strong acid solutions using 2D IR spectroscopy of the acid continuum band. We observe a crosspeak between stretching and bending vibrations associated with the excess proton at (3200 cm⁻¹, 1760 cm⁻¹) that is assigned to a persistent Zundel complex.

Water

Chair: Huib J. Bakker

09:50

Frequency Fluctuations of Non-Ionic Vibrational Probe in Waterstudied by 2DIR Spectroscopy and Molecular Simulation Th04

Keisuke Tominaga

Kobe University, Japan

Frequency fluctuations of the CN stretching mode of 2-nitro-5thiocyanatobenzoic acid are examined by 2D-IR spectroscopy and classical molecular dynamics simulation. The 2D-IR experiment revealed that the frequency-frequency correlation function contained the decay component of 1.1 ps, which is attributed to the rearrangement of hydrogenbond network around the solute.

10:10 Short-Range Electric Interactions of the DNA Surface with its Hydration Shell

Th05 Thomas Elsaesser

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie. Germany

Electric interactions at the interface of native DNA and its aqueous environment are probed with two-dimensional infrared (2D-IR) spectroscopy of backbone vibrations. The fast fluctuations of electric forces from thermal water motions acting on these oscillators are limited in their range to the first two hydration lavers.

10:30 Coffee break

Sponsored by Infrared Systems

			lons	Chair: Amber T. Krummel
11:00		2D-Raman-THz S	pectroscopy	of Salt Solutions
	Th06	Peter Hamm University of Zurich, S	Switzerland	
	time corr	aman-THz repsonse o elates with the water ds of water and ions	of salt solutions structuring cap	reveals an echo, whose decay ability of the cation. Polarizable I to simulate the spectroscopic

Thursday, June 30

lons Chair: Amber T. Krummel

11:30Study the Spatial Range of Ion Effect Using 1D and 2D
Vibrational Spectroscopy

Th07 Wei Zhuang

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China

The range of ion effect on water in ionic solutions was studied theoretically using 1D and 2D vibrational spectroscopy. Evidence of ion effect beyond its hydration shell was addressed in infrared photodissociation spectra and low frequency vibration spectra.

11:50

Heterogeneous Solvation Dynamics in an Ionic Liquid: Multidimensional Rate Spectra Yield Quantitative Measurements

Th08

Mark A. Berg University of South Carolina, USA

Multidimensional correlation functions have been applied to simulations of solvation dynamics in an ionic liquid. Heterogeneity is found in both the rate of diffusive solvation and in the amplitude of inertial solvation. New methods for analyzing multidimensional kinetics have been developed to quantify these phenomena.

12:10

Ultrafast Vibrational Spectroscopy of Ionic Liquids

Th09 Sean Garrett-Roe

University of Pittsburgh, USA

Ultrafast dynamics in ionic liquids are studied with 2D-IR spectroscopy. Quantum chemistry and molecular dynamics simulations unravel the experimentally observed vibrational frequency fluctuation correlation functions of CO_2 . Thiocyanate ionic liquids in reverse micelles respond to confinement depending on micelle size and surfactant.

12:30 Lunch + IOC meeting

Thursday, June 30

Materials II

Chair: Tobias Brixner

13:30

Vibronic Effects in Singlet Fission Observed by Coherent Electronic 2D Spectroscopy

Th10 Artem A. Bakulin

University of Cambridge, UK

We use electronic 2D spectroscopy to study the intermediate states responsible for ultrafast singlet exciton fission in pentacene-/tetracene-based molecular crystals and in pentacene dimers. Our results show the vibrational coupling enhances interaction between the singlet and multiexcitonic double-triplet states, which greatly facilitates fission process.

14:00

Two-Dimensional Coherent Photocurrent Excitation Spectroscopy Of A Hybrid Lead-Halide Perovskite Solar Cell

Th11

Pascal Grégoire Université de Montréal, Canada

We report two-dimensional coherent photocurrent excitation spectroscopy in efficient hybrid lead-halide perovskite solar cells. We identify weakly bound exciton and continuum excitation features in the total correlation spectrum. Via the absolute zero-time rephasing spectrum, we also measure the temperature-dependent homogeneous linewidth and thus address the proposed polaronic nature of photocarriers.

14:20

Extracting Solar Energy from Singlet Fission Materials

Th12 Sean T. Roberts

University of Texas at Austin, USA

Singlet Fission is a process wherein a highly excited spin-singlet exciton divides its energy to form a pair of spin-correlated triplet excitations. We report ultrafast transient absorption and electronic sum frequency generation experiments that establish structure-function relationships that allow triplet exciton formation and extraction from perylene diimide thin films.

Materials II

Chair: Tobias Brixner

14:40

Multi-Quantum Coherences Measure the Exciton-Polariton Ladder of States in a Microcavity Th13

Steven T. Cundiff

University of Colorado, USA

Exciton-polaritons result when the coherent exchange of energy between excitons and light is strong, giving new eigenmodes. We study these eigenmodes using a collinear approach to 2D near-IR spectroscopy. Multiquantum coherences reveal higher-order avoided crossings inaccessible in standard experiments. These avoided crossings reveal the structure of the cavity polariton.

15:00 Coffee break

Sponsored by Ultrafast Innovations

Biomolecules II (Proteins) Chair: Jianping Wang

15:30

2D-IR Versus VCD Spectroscopy of Artificial $\beta\mbox{-Sheet}$ Forming Fibrils

Th14 Jan Helbing

University of Zurich, Switzerland

We discuss 2D-IR and VCD spectra of self-assembled nanostructures, which form monomeric right-handed parallel beta sheet helices, but exhibit the 'giant' amide I VCD signals typical of left-handed amyloid-like peptide aggregates. Isotope-labelling and strand-length variations cause dramatic changes in the VCD signal, which are only partially reflected in 2D-IR.

16:00

Temperature-Induced Collapse of Elastin-Like Peptides Studied by 2DIR Spectroscopy

Th15

Yves L.A. Rezus

FOM institute AMOLF, The Netherlands

We use 2DIR spectroscopy to study the conformational dynamics of elastinlike peptides in both their soluble and aggregated form. We find that the peptides remain surprisingly well hydrated in the aggregated state. In addition, we find evidence for the presence of an intramolecular hydrogenbond in both states.

Thursday, June 30

		Biomolecules II (Proteins)	Chair: Jianping Wang		
16:20		Dynamics of Substrate-Based IR F Transporters	Probes in Enzymes and		
	Th16	Sean D. Moran			
		Southern Illinois University Carbondale, U	JSA		
	I will present our work characterizing substrate and binding pocket dynamics in enzymes and transmembrane transport proteins using 2D IR spectroscopy. We focus on developing vibrational probes that are close analogs of substrates for these proteins to understand how protein structure, dynamics, and environment guide reactivity and transport.				
16:40	71.47	The Structure of a Drug-Protein C Analysed by EVV 2DIR Spectrosco			
	Th17	David R. Klug			
		Imperial College London, UK			
	The geometry of a drug-bound to its protein target is measured with EVV 2DIR. Of the >200 resolvable peaks at least 7 are due to specific binding. By comparing the spectrum calculated from the crystal structure with that measured by EVV 2DIR we can determine whether the structure as observed by EVV 2DIR is the same as that of the complex in the crystal structure or not.				
17:00		Boat trip – Excursion			
		Departure from "De Oosterpoort", Trom	osingel 27		
19:00		Conference dinner			
		Location: 't Feithhuis, Martinikerkhof 10			

Light Harvesting

Chair: Tomáš Mancal

08:30 Multidimensional Spectroscopic Studies of Photosynthetic Reaction Centers Fr01

Jennifer P. Ogilvie

University of Michigan, USA

We describe two-dimensional electronic spectroscopy studies of the primary processes of energy transfer and charge separation in photosynthetic reaction centers. We compare the observation of coherent dynamics in reaction centers with control studies in monomer pigments. To probe charge separation in reaction centers, we combine two-dimensional electronic and Stark spectroscopies.

Coherence Shift Mechanism Explains Long-Lived Beatings in Bacterial Reaction Centers

Fr02 David Paleček

Lund University, Sweden

We experimentally identified a new photophysical mechanism of coherence shift from the excited to ground electronic state, occurring during energy transfer process. It provides a clear explanation for the picosecond lifetimes of the coherences in the reaction centers.

09:20

09:00

Fluorescence Detected 2D Spectroscopy of LH2

Fr03 Tõnu Pullerits

Lund University, Sweden

Fluorescence detected coherent 2D spectroscopy on peripheral light harvesting complex of photosynthetic purple bacteria LH2 reveals clean cross peaks between two major absorption bands B800 and B850. The results together with quantum dynamics simulations allow new insight to the excitation dynamics in this system.

Light Harvesting

Chair: Tomáš Mancal

09:40

2D Electronic Spectroscopy Study of Coherent and Structural Dynamical Effects in Porphyrin Chromophores

Fr04

Ismael A. Heisler

University of East Anglia, UK

In order to successfully create efficient novel porphyrin based artificial light harvesting materials the excited state dynamics associated with conformational heterogeneity have to be determined and understood. Multitimescale processes are present in conjugated molecular structures as well as coherent phenomena. Here we address early time dynamics with 2D electronic spectroscopy.

10:00

Excitation Energy Transfer Dynamics of LHCII complexes

Fr05

Howe-Siang Tan

Nanyang Technological University, Singapore

We use ultrafast ultrafast pump-probe, 3rd order 2D electronic (2DES) and 5th order 3D electronic (3DES) spectroscopies to study the excitation energy transfer dynamics of plant light-harvesting complex II, LHCII. Studies on solubilized natural and mutant trimers, as well as aggregates will be presented.

10:20

Electronic Coherences in Rhodamine Dimers: Vibronic Coupling and Distance Dependence

Fr06

Elisabetta Collini

University of Padova, Italy

2D electronic spectroscopy experiments supported by theoretical modeling on rhodamines hetero-dimers characterized by different interpigment distances and electronic interactions have been performed to clarify the role of vibronic coupling in the coherent dynamics of the systems.

Light Harvesting

Chair: Tomáš Mancal

10:40

Revealing Quantum Coherence in Photosynthetic Complexes Using Ultrafast Spectroscopy: Simulation Studies

Fr07 ^S

Qiang Shi

Institute of Chemistry, Chinese Academy of Sciences, China

Simulations are performed to study quantum coherence in photosynthetic complexes using ultrafast spectroscopy. It is found that: (1) Different types of quantum coherence can be distinguished in pump-probe polarization anisotropy measurements. (2) Specific pulse shaping schemes are important in observing coherent energy transfer in the single molecule two-color double-pump experiment.

11:00		Poster session II (even numbers)		
12:30		Lunch		
		Methods II	Chair: Arend G. Dijkstra	
13:30	Fr08	Vibrational Solvatochromism, Intermolecular Interaction, and Femtosecond Vibrational/Electronic Spectroscopy		
		Minhaeng Cho Korea University, Korea		
	critical in one of t	nultidimensional vibrational spectrosco formation on vibrational frequency flu he vibrational solvatochromism phen stematic development in vibrational sol	ictuation dynamics, which is omena. We here discuss a	

applications to a few different systems.

Methods II

Chair: Arend G. Dijkstra

14:00

Transient 2DIR Spectroscopy in a Vibrational Ladder

Fr09 Vincent Kemlin

Université Paris-Saclay, France

We perform transient two-dimensional Fourier-Transform infrared spectroscopy after vibrational ladder climbing in carboxy-hemoglobin. We will discuss how the observed diagonal and cross-peak dynamics can be related to population relaxation in this non-stationary system brought far from equilibrium.

14:20

Fr10

Contact Ion-Pairing of LiOCN Under Multiple Solvent Conditions Enabled by Interfacing Microfluidics with 2D IR Spectroscopy

Amber T. Krummel

Colorado State University, USA

We present the interfacing of IR compatible microfluidics with 2D IR spectroscopy to examine the solvatochromic pseudo-halide anion, cyanate (OCN⁻) in cosolvent environments. 2D IR spectra are collected laterally across the device to capture the vibrational dynamics of OCN⁻ in methanol/dimethyl formamide cosolvent environments.

14:40

Alternative View of Two-Dimensional Spectroscopy

Fr11 Maxim F. Gelin

Technische Universität München, Germany

We show that femtosecond two-dimensional (2D) signals can alternatively be measured and computed as four-wave-mixing signals generated with two femtosecond pulses and two one-sided continuous-wave pulses. This alternative view allows a computationally more efficient evaluation of 2D signals and clarifies the relationship of 2D spectroscopy with other timedomain and mixed time-frequency-domain techniques.

15:00	Closing remarks
-------	-----------------

15:30 Conference end

Poster Session I (Odd Numbers)

Wednesday, June 29

Water Hydrogen-Bonding Dynamics at Different Phases of Lipid Multibilayer: Femtosecond Mid-IR Pump-Probe Spectroscopy

<u>Achintya Kundu</u>, Minhaeng Cho

19:00

P01

Institute for Basic Science, Korea University, SEOUL, Korea

The water hydrogen-bonding dynamics at different phases of lipid-multibilayer are studied by femtosecond Mid-IR pump-probe spectroscopy. We observe existence of two different vibrational lifetime components (phosphate-associated water and choline-associated water). Vibrational lifetime of phosphate-associated water remains constant, whereas other component slows down in a sigmoidal fashion upon lipid phase transition.

Dynamics of the Excited Electronic States of Pyrene in the Deep UV

PO3 Alessandra Picchiotti¹, Valentyn I. Prokhorenko¹, Artur Nenov², Angelo Giussani², Marco Garavelli², R.J. Dwayne Miller¹ ¹Max Planck Institute for the Structure and Dynamics of Matter, HAMBURG, Germany ²University of Bologna, BOLOGNA, Italy

We investigated pyrene using electronic two-dimensional, heterodyne transient grating, and transient absorption spectroscopies in a 250-300 nm spectral range. We resolved several cross-peaks and oscillations providing an insight to the S_3 vibronic excited state. Our findings are corroborated by theoretical simulations resulting in multiple oscillating diagonal and off-diagonal peaks.

Benchmarking Spectral Simulation Protocols for Amide I

P05 <u>Ana V. Cunha</u>, Anna S. Bondarenko, Thomas L.C. Jansen University of Groningen, GRONINGEN, The Netherlands

A benchmark of amide I spectral simulation protocols is presented. Results allow choosing the optimal frequency mapping and coupling model for the tested force fields. We further find that due to the sensitivity of two-dimensional spectroscopy there is room for improving the protocols.

2D Raman-THz Spectroscopy of Aqueous Salt Solutions

P07 <u>Andrey Shalit</u>, Saima Ahmed, Peter Hamm Universitat Zurich, ZURICH, Switzerland

The ultrafast time-resolved 2D Raman-THz spectroscopy was applied to study the dynamics of hydrogen bond networks in the aqueous solutions of the chloride salts. We demonstrate that the extent of the echo signal along the correlated $t_1=t_2$ coordinate correlates with the viscosity of the solution.

New Simulations of 2D spectra of Photosystem II Reaction Center

P09 Andrius Gelzinis¹, S. Seckin Senlik², Jennifer P. Ogilvie², Darius Abramavicius¹, Leonas Valkunas¹ ¹Vilnius University, VILNIUS, Lithuania ²University of Michigan, ANN ARBOR, United States of America

Two dimensional spectra of photosystem II reaction center are simulated and compared with experimental results. Significant improvement comparing with previous simulations is achieved, by using a more suitable theoretical approach and updated model parameters.

Excitation Energy Transfer in Multichromophoric Systems

P11 <u>Anna S. Bondarenko</u>, Thomas L.C. Jansen, Jasper Knoester University of Groningen, GRONINGEN, The Netherlands

Different methods are tested for determining the excitation energy transfer rate in a model of coupled ring systems, a situation where conventional Förster theory is breaking down. The study on simple systems can help better understanding of validity and applicability of different approaches, when studying bigger systems.

Modeling 2DUV Spectra of Nucleobases: Damped Dynamics Through Conical Intersections

P13Arend G. Dijkstra, Jason D. Biggs, Michal A. Kochman,
Alessandra Picchiotti, Valentyn I. Prokhorenko, R.J. Dwayne Miller
Max Planck Institute for the Structure and Dynamics of Matter, HAMBURG,
Germany

We propose a model of damped dynamics on potential energy surfaces that exhibit conical intersections. The resulting ultrafast populations are compared with experimental 2DUV spectra.

Towards 2D Spectroscopy of Molecular Aggregate Formation

P15 <u>Björn Kriete</u>, Maxim S. Pshenichnikov University of Groningen, GRONINGEN, The Netherlands

The self-assembly dynamics of tubular J-aggregates were investigated by combining time-

resolved spectroscopy and microfluidics. By projecting the aggregate formation process into space, this novel lab-on-a-chip approach could reveal intermediate aggregation species.

A Robust, Fully Automated Algorithm to Collect High Quality OPA Tuning Curves

P17 <u>Blaise J. Thompson</u>, Schuyler Kain, Daniel D. Kohler, Paul Hebert, John C. Wright *University of Wisconsin-Madison, MADISON, United States of America*

Motorized optical parametric amplifiers (OPAs) are increasingly common, but frequency domain experiments remain difficult, due in part to unreliable and irreproducible OPA tuning curves. We have developed an automated OPA tuning routine that produces robust, high quality tuning curves quickly.

Water and Oil Do Mix: Structure and Dynamics of Water in Triglyceride Oils

P19 <u>Carien C.M. Groot</u>¹, K.P. Velikov², H.J. Bakker¹ ¹FOM Institute AMOLF, AMSTERDAM, The Netherlands ²Utrecht University, UTRECHT, The Netherlands

The hydrogen-bond structure and dynamics of water in triglycerides triacetin, tributyrin and trioctanoin are studied using linear IR and 2D IR spectroscopy. We identify several stable (>20ps) water configurations: water clusters, waters with a single hydrogen bond to the triglyceride and waters with two hydrogen bonds to the triglyceride.

Investigating the Dynamics of Interfacial Ester Carbonyls in Lipid Bilayers

P21

<u>Carlos R. Baiz</u>, Sean C. Edington, Mason L. Valentine, Jennifer C. Flanagan University of Texas-Austin, AUSTIN, United States of America

We present a general approach for parameterizing vibrational maps using input from experimental FTIR and 2D IR spectra. We develop an electrostatic map to model IR linear and nonlinear spectra of ester C=O vibrations in lipids, and we apply it to simulate spectra of lipid bilayers under different hydration conditions.

Understanding the Two-dimensional Electronic Spectra Peak Shapes of CdSe Quantum Dots

P23 <u>Cheng Zhang</u>, Thanh Nhut Do, Howe-Siang Tan Nanyang Technological University, SINGAPORE, Singapore

CdSe nanocrystal quantum dots are studied by Two-dimensional Electronic Spectroscopic technique with a pump-probe geometry. Zero Line Slope analysis is performed to investigate the homogeneous and inhomogeneous broadening effects in the 2D spectra.

Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations

P25 $\frac{\text{Cyril Falvo}^{1}, \text{Louis Daniault}^{2}, \text{Thibault Vieille}^{2}, \text{Vincent Kemlin}^{2},}{\text{Jean-Christophe Lambry}^{2}, \text{Christoph Meier}^{3}, \text{Marten Vos}^{2},}{\text{Adeline Bonvalet}^{2}, \text{Manuel Joffre}^{2}}$ $\frac{^{1}\text{Universit\acute{e} Paris Sud, ORSAY, France}}{^{2}\text{Ecole Polytechnique, PALAISEAU, France}}$ $\frac{^{3}\text{Universit\acute{e} Paul Sabatier, TOULOUSE, France}}{^{3}\text{Universit\acute{e} Paul Sabatier, TOULOUSE, France}}$

We present high-resolution 2D-IR measurements and detailed simulations of HbCO with a good agreement between theory and experiment. The simulation shows the strong effect of the distal histidine through a hydrogen bond, which is responsible for the slow decay of the frequency-frequency correlation function.

Calculation of Two-Dimensional Spectra Using the Stochastic Hierarchy of Pure States (HOPS)

P27

<u>Z. Li</u>, P.-P. Zhang, A. Eisfeld *Max-Planck Institute, DRESDEN, Germany*

Reliable theoretical calculations necessary for the correct interpretation of two-dimensional spectra are impeded by large system sizes and vibrational degrees of freedom Here we demonstrate that a numerical approach based on a stochastic hierarchy of pure states (HOPS) does allow to calculate two-dimensional spectra, notwithstanding the stochasticity of our method.

Theory of Femtosecond Double-Pulse Single-Molecule Spectroscopy

P29

<u>Elisa Palacino González</u>, Maxim F. Gelin, Wolfgang Domcke *Technical University of Munich (TUM), GARCHING, Germany*

We have performed simulations of single-molecule fluorescence signals, excited by two phase-locked pump pulses, for several models with strong intramolecular electronic and electron-vibrational couplings. The signals can be decomposed into population and coherence contributions. We explored how the initial preparation of the molecular system manifests itself in the fluorescence signal.

2D IR Spectroscopy on OH Stretch in Diluted Alcohols

<u>Evgeniia Salamatova</u>¹, Keisuke Shinokita², Ana V. Cunha³, Thomas L.C. Jansen³, Maxim S. Pshenichnikov³

P31

¹Zernike Institute for Advanced Materials, GRONINGEN, The Netherlands ²Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, BERLIN, Germany

³University of Groningen, GRONINGEN, The Netherlands

Hydrogen bond (HB) dynamics of strongly diluted alcohols were studied with 2D IR spectroscopy and combined molecular dynamics - spectral simulations on the OH stretching mode. For eight studied alcohols, the HB dynamics have similar behavior with fast (~200 fs) initial relaxation and long (3 ps) tail.

Impact of the Double-Single Strand Transition on Vibrational Coupling and Spectral Diffusion in an AT-15mer

P33 Gordon Hithell¹, Daniel J. Shaw¹, Gregory M. Greetham², Paul M. Donaldson², Michael Towrie², Glenn A. Burley¹, Anthony W. Parker², Neil T. Hunt¹ ¹University of Strathclyde, GLASGOW, United Kingdom ²STFC Central Laser Facility, DIDCOT, United Kingdom

Ultrafast 2D-IR spectroscopy has been used to study the double-single strand transition of an AT-15mer DNA duplex. Changes in the 2D-IR spectra with temperature correlate with duplex melting and provide new insight into changes in vibrational coupling and spectral diffusion accompanying loss of Watson-Crick base pairing.

2D Infrared Spectroscopy of High Pressure Phases of Ice

<u>Halina Tran</u>¹, Ana V. Cunha², Jacob J. Shephard³, Andrey Shalit¹, Thomas L.C. Jansen², Christoph G. Salzmann³, Peter Hamm¹

P35 I homas L.C. Jansen², Christoph G. Salzmann², Peter ¹University of Zürich, ZÜRICH, Switzerland ²University of Groningen, GRONINGEN, The Netherlands ³University College London, LONDON, United Kingdom

The OH-stretch vibration of ice is complex and the assignment of distinct peaks of the OHband remains controversial. We present 2D IR spectra of hydrogen ordered phases of ice. They exhibit distinct features that can aid the understanding of the coupling processes that underlie the OH-stretch mode.

Signatures of Charge Separation in the Reaction Center of PSII Revealed by 2D Electronic Spectroscopy

P37 Hong-Guang Duan¹, Emilie Wientjes², Roberta Croce², Michael Thorwart³, Valentyn I. Prokhorenko¹, R.J. Dwayne Miller¹ ¹Max-Planck Institute, HAMBURG, Germany ²University of Groningen, GRONINGEN, The Netherlands

³University of Hamburg, HAMBURG, Germany

Charge separation in the Photosystem II (PSII) reaction center (RC) was studied with 2D electronic spectroscopy at ambient conditions. Primary charge separation and associated timescale (1.5 ps) are identified by comparison of measured and calculated 2D decay-associated-spectra (2DDAS). For the modelling, we applied a tight-binding Hamiltonian.

Vibration-Mediated Coherent Mixing of Exciton and Polaron Pair In a Conjugated Polymer

<u>James Lim</u>¹, Antonietta De Sio², Filippo Troiani³, Ephraim Sommer², Margherita Maiuri⁴, Julien Réhault⁴, Susana F. Huelga¹, Martin B. Plenio¹, Giulio Cerullo⁴, Elisa Molinari³, Christoph Lienau²

P39

¹Universität Ulm, ULM, Germany
 ²Carl von Ossietzky Universität, OLDENBURG, Germany
 ³Istituto Nanoscienze - CNR, MODENA, Italy
 ⁴IFN-CNR, MILANO, Italy

Coherent electronic and vibronic features in the two-dimensional (2D) electronic spectra of a conjugated polymer where polaron pairs are formed on a sub-100 fs timescale are investigated theoretically. We identify signatures of coherent couplings and demonstrate that incoherent models cannot account for 2D spectra that have recently been obtained experimentally.

Surface-Enhanced 2D Attenuated Total Reflectance IR Spectroscopy for Studying Surface-Sensitive Ultrafast Vibrational Dynamics

Jan Philip Kraack, Peter Hamm University of Zürich, ZÜRICH, Switzerland

We present our latest developments towards establishing 2D attenuated total reflectance (ATR) IR spectroscopy as a versatile, surface-sensitive method for obtaining ultrafast vibrational signals from solid-liquid interfaces. Surface-enhancement mechanisms are characterized in detail and we report the development of 2D ATR IR for spectroelectrochemistry at electrode surfaces.

Rotational Dynamics of Solutes with Multi-Rotational Axes in 1-Alchohol Solutions Studied by Infrared Pump-Probe Spectroscopy

P43

P41

Masaki Okuda, Kaoru Ohta, Keisuke Tominaga

Kobe University, KOBE, Japan

We observed the anisotropy decays of N_3 derivatized amino acids in the primary 1-alcohols with infrared pump-probe spectroscopy. From the temperature dependence of the rotational relaxation time, it is suggested that there are some correlations between rotational motions of the azide group and the nearby alkyl chain.

Photocurrent Detected Two-Dimensional Spectroscopy of InP Nanowire Array Solar Cell

P45

<u>Khadga J. Karki</u>, Gaute Otnes, Magnus Borgström, Tõnu Pullerits ¹Lund University, LUND, Sweden

Photocurrent detected two-dimensional spectroscopy is used to study the effect of excitations in InP nanowire array solar cell. Results show instantaneous changes in the band structure of the semiconductor material due to the excitation of electrons into the conduction band. Possible mechanisms that lead to the changes are discussed.

Solvation Dynamics of Concentrated Aqueous Polymer Mixtures: A Two-Dimensional Infrared Spectroscopy Study

P47

<u>Kimberly R. Daley</u>, Kevin J. Kubarych

University of Michigan, ANN ARBOR, United States of America

Two-dimensional infrared spectroscopy is used to explore the chemical dynamics of crowded polymer mixtures. Using a transition metal carbonyl probe in solution, we find unexpected polymer length and concentration dependent dynamics in D_2O .

Investigating Nonadiabatic Photoisomerization Dynamics of Phytochrome Cph1 Using 2D ES

P49

Laurie A. Bizimana, Johanna Brazard, Daniel B. Turner New York University, NEW YORK, United States of America

We use high-sensitivity two-dimensional electronic spectroscopy (2D ES) to directly probe the conformational heterogeneity of the ground state populations in phytochromes. The sub-100 fs population dynamics of the P_{fr} to P_r reaction indicate photoisomerization proceeds through a conical intersection.

Time-Resolved Vibrational Spectroscopy of Coumarin Cages Which Can Trigger Fast Bio/Chemical Reactions

Luuk J.G.W. van Wilderen¹, Carsten Neumann², Daniela Kern-Michler², Nicole Seibert², Alexandre Rodrigues Correia³, Matiss Reinfelds³,

P51 Alexander Heckel³, Jens Bredenbeck²

¹Johann Wolfgang Goethe-University, FRANKFURT AM MAIN, Germany ²Institute of Biophysics, Johann Wolfgang Goethe-University, FRANKFURT AM MAIN, Germany

³Institute of Organic Chemistry and Chemical Biology, Goethe-University, FRANKFURT AM MAIN, Germany

The uncaging mechanism of the coumarin cage DEACM has been investigated and uncaging was resolved on a picosecond time scale, putting DEACM among the fastest known photocages. The influence of the solvent environment is investigated for two different attached leaving groups (LGs), i.e. azide and thiocyanate.

General Vibrational Spectroscopies with Wilson

 P53
 Magnus Ringholm, Dan Jonsson, Kenneth Ruud

 Centre for Theoretical and Computational Chemistry, TROMSØ, Norway

We present an approach to simulate any elastic frequency-resolved vibrational spectroscopy where the incident lasers are in the infrared or ultraviolet/visible range, detuned from any electronic resonances, using a recursive scheme to identify the relevant contributions to the spectroscopic process. The approach is implemented in the computer program Wilson.

Signatures of Förster and Dexter Couplings between Quantum dots in 2D Spectroscopy

P55

Marten Richter, Judith F. Specht

Institut für Theoretische Physik, Technische Universität Berlin, BERLIN, Germany

Two major types of coupling mechanism lead to excitation energy transfer between nanostructures: Dexter- and Förster coupling. We show theoretically, that both couplings between two quantum dots can be distinguished by the double quantum coherence spectroscopy technique.

Structure and Dynamics of Solvated Protons in Water Studied with 2D IR Spectroscopy

P57 <u>Martin Thämer</u>¹, Luigi De Marco², Andrei Tokmakoff² ¹*Fritz-Haber-Institut der Max-Planck-Gesellschaft, BERLIN, Germany* ²*University of Chicago, CHICAGO, United States of America*

Using ultrafast 2D IR spectroscopy we investigated the structures adopted by excess protons in water and their dynamics which drive the proton transfer process. Our results give insight into the role of the Zundel complex in the proton transfer mechanism.

Detection of Conical Intersection from the Vibrational Coherences

P59 Marwa Farag, Thomas L.C. Jansen, Jasper Knoester

Zernike Institute for Advanced Materials, GRONINGEN, The Netherlands

Vibrational coherences can be considered as a tool to detect the Conical Intersection (CI), because the wavepacket motion is affected by the surface crossing. Here, we identify the spectroscopic signatures associated with CI by analyzing the coherent wavepacket motions extracted from the linear absorption (1D) and two-dimensional electronic spectra (2DES).

Two-Dimensional Terahertz-Spectroscopy on Aspirin

P61 <u>Giulia Folpini</u>, Klaus Reimann, Michael Woerner, Thomas Elsaesser Max Born Institute, BERLIN, Germany

Ultrafast phonon dynamics in polycrystalline Aspirin is studied with 2D THz spectroscopy. The hybrid mode of the CH3-rotations with collective oscillations of the p-electrons shows a nonlinear absorption around 1.4 THz that leads to a coherent emission at 1.9 THz pointing to a dynamic breakup of the strong electron-phonon correlations.

Wavelet filter for Femtosecond Stimulated Raman Spectroscopy: a new approach brings new horizons

P63 <u>Miroslav Kloz^{1,2}</u>, Jörn Weißenborn¹, Yusaku Hontani¹, John T.M. Kennis¹ ¹VU University Amsterdam, AMSTERDAM, The Netherlands ²Institute of Physics ASCR, PRAGUE, Czech Republic

A new method for recording Raman spectra was developed that dramatically improves and automatizes baseline problems. Instead of using a narrowband Raman source, the experiment is performed using shaping of a broadband source. This allows locking the signal into carefully crafted watermarks that can be recognized from background.

Studying Energy Transfer Dynamics in Light Harvesting Complex II using 2D Electronic-Vibrational Spectroscopy

Nicholas H.C. Lewis¹, Thomas A.A. Oliver², Matteo Ballottari³,

Natalie L. Gruenke¹, Roberto Bassi³, Graham R. Fleming¹

P65

¹University of California, Berkeley, BERKELEY, United States of America ²School of Chemistry, University of Bristol, BRISTOL, United Kingdom ³Dipartimento di Biotecnologie, Facoltà di Scienze, Università di Verona, VERONA, Italy

Excitation energy transfer dynamics in the photosynthetic protein LHCII from spinach, are studied using 2D electronic-vibrational spectroscopy. We show how energy transfer from Chl *b* to Chl *a* and can be directly observed in LHCII using this multidimensional technique, revealing previously unobserved steps in the excitation transfer pathway.

Coherent 2D Spectroscopy of Pentacene Thin Films

P67 <u>Lars Mewes</u>, André Al Haddad, Paul Gratia, Philippe Bugnon, Christopher A. Arrell, Frank Van Mourik, Majed Chergui *EPFL, LAUSANNE, Switzerland*

We present our results on the photo induced dynamics inside a prototypical organic thin film semiconductor, namely pentacene. Measurements were performed on our recently commissioned visible 2D photon echo spectrometer, which covers a spectral range between 500 to 950 nm and provides sub-10 fs passively phase stabilized pulses.

Two-Dimensional Infrared Spectroscopy of a Site-Specifically Labeled Photoswitchable Allosteric Protein

P69 Olga R. Bozovic, Brigitte Stucki-Buchli, Philip J.M. Johnson, Klemens L. Koziol, <u>Claudio Zanobini</u>, Peter Hamm University of Zürich, ZURICH, Switzerland

We have measured 2D-IR difference spectra for several different mutants of the PDZ2 domain protein using azidohomoalanine as a label. The 2D-IR difference spectra upon inducing the conformational change of a site-specifically labeled protein, as well as difference spectra for temperature depending unfolding of the protein are reported.

100 kHz 2D-IR Spectroscopy. Applications of a Fast, Sensitive Spectrometer to Chemical and Biochemical Problems

P71 <u>Paul Donaldson</u>, Greg Greetham, Rex Manurung, Tony Parker, Mike Towrie *Central Laser Facility, DIDCOT, United Kingdom*

We present a 2D-IR spectrometer with a 100 kHz acquisition rate built around Yb:KGW amplifier technology. We demonstrate that the increased sensitivity and speed is a significant step forward for on the fly spectroscopy of chemical reactions and for the sensitive detection of protein labels at low concentrations.

Multistate DNA Oligonucleotide Dissociation Revealed Through FTIR, 2D IR, and t-HDVE Spectroscopy

P73

<u>Paul J. Sanstead</u>, Paul Stevenson, Andrei Tokmakoff University of Chicago, CHICAGO, United States of America

The dehybridization of DNA oligonucleotides is studied with a combination of FTIR, 2D IR, and temperature jump t-HDVE spectroscopies. Nucleobase sequence is found to dictate the dissociation mechanism, with timescales of ~10 μ s assigned to strand dissociation and ~70 ns assigned to premelting events such as duplex fraying.

Heterogeneous Protein-Ligand Binding Determined by 2D IR Spectroscopy with the Unnatural Amino Acid Azidohomoalanine

P75

<u>Philip J.M. Johnson</u>, Klemens L. Koziol, Peter Hamm University of Zürich, ZURICH, Switzerland

Using azidohomoalanine as a vibrational probe of local protein structure, we observe multiple ligand binding conformations for C-terminal Aha mutated ligands when bound to a PDZ2 domain, manifest as multiple distinct frequency shifts from the unbound ligand bleach response as observed by 2D IR spectroscopy.

Mapping the Evolution of Spatial Exciton Coherence Through Time-Resolved Fluorescence

P77 Roel Tempelaar¹, Frank C. Spano², Jasper Knoester³, Thomas L.C. Jansen³ ¹Columbia University, NEW YORK, United States of America ²Temple University, PHILADELPHIA, United States of America ³University of Groningen, GRONINGEN, The Netherlands

We demonstrate that time-resolved fluorescence allows one to continuously monitor exciton coherence between molecules featuring a pronounced vibronic progression. The degree of coherence is shown to be directly reflected in the spectral vibronic peaks. Fluorescence excludes ground state vibrations, which makes this excited state coherence measure unambiguous to interpret.

Tracking Electron and Hole Relaxation Dynamics in CdTe Nanorods by 2D Electronic Spectroscopy

P79 Tatjana Stoll¹, <u>Federico Branchi¹</u>, Ilka Kriegel², Francesco Scotognella¹, Giulio Cerullo¹

¹Politecnico di Milano, MILAN, Italy ²Instituto Italiano di Tecnologia (IIT), MILAN, Italy

We present new insights into the exciton dynamics from two-dimensional electronic spectroscopy on CdTe nanorods. Tracing of state-resolved energy relaxation dynamics allowed us to resolve the dynamics of both electron and hole transitions.

P81 Spectral Manifestation of C₂ Modulation of the LH2 Complex of Purple Bacteria

<u>Tenzin Kunsel</u>, Thomas L.C. Jansen, Jasper Knoester Zernike Institute for Advanced Materials, GRONINGEN, The Netherlands

 C_2 modulation in the B850 rings was suggested from single-molecule studies. It can manifest in various forms; five of which are discriminated based on single-molecule, linear and twodimensional spectroscopy. We find that a model with C_2 modulated diagonal disorder fits best with all the experimental results.

Probing State- and Size-Dependent Line Broadening in CdSe Nanocrystals Using 2D ES

P83 <u>Tobias A. Gellen</u>, Daniel B. Turner

New York University Department of Chemistry, MANHATTAN, United States of America

Two-dimensional electronic spectroscopy (2D ES) can separate the homogeneous and inhomogeneous linewidths of CdSe nanocrystals. We find that, in contrast to inhomogeneous linewidths, homogeneous linewidths are relatively insensitive to both electronic state and nanocrystal size. This suggests that solvent effects dominate homogeneous line broadening.

Vibronically Mediated Exciton Transfer in Perylene Dimers

P85 Václav Perlík¹, Vladislav Sláma¹, Tomáš Mančal¹, František Šanda¹, Eberhard Riedle², Craig Lincoln³, Jüergen Hauer³
 ¹Charles University Prague, PRAHA 2, Czech Republic
 ²LS fur BioMolekulare Optik, LMU MUNCHEN, Germany
 ³Photonics Institute, TU Wien, VIENNA, Austria

Exciton transfer in molecular dyads depends critically on the spatial arrangement of donor and acceptor. Orthogonal perylene bisimide dimers exhibit transfer faster than expected from Förster theory. We show how the interplay of electronic dynamics with underdamped high frequency vibrational modes acts as a mechanism for fast transfer.

Intra- and Intermolecular Vibrational Coupling in a Polymerization Reaction

P87

<u>Valeri Kozich</u>, Theodore von Haimberger, Karsten Heyne Freie Universität Berlin, BERLIN, Germany

Vibrational coupling of N=C=O stretching vibration at 2270 cm⁻¹ with lower frequency modes in two reactants of a polymerization reaction are studied with 2D IR spectroscopy. The observed coupling with 1530 cm⁻¹ modes indicates that this vibration could contribute to the chemical reaction coordinate.

Interfacial Hydration Dynamics in Cationic Reverse and Regular Micelles Using 2D-IR

P89

<u>Ved Prakash Roy</u>, Kevin J. Kubarych University of Michigan, ANN ARBOR, United States of America

We use thiocyanate ions to probe interfacial hydration dynamics in regular and reverse micelles using ultrafast 2D-IR. The affinity of the anion for the cationic interfaces enables examination of dynamics independent of surface curvature.

Comparison of Coherent Oscillations in 2DES studies of Bacterial Reaction Centers and Bacteriochlorophyll a

P91

<u>Veronica Policht</u>, Andrew Niedringhaus, Jennifer Ogilvie University of Michigan, ANN ARBOR, United States of America

We use two-dimensional electronic spectroscopy to study the coherent dynamics of photosynthetic Bacterial Reaction Centers (BRC) and monomeric Bacteriochlorophyll a (BChl a), the most abundant pigment in BRCs. We find several coherent modes common to both systems and consider the origin of the coherent dynamics.

2D-IR Spectroscopy of Water Molecules in a Hydrated Lithium Nitrate Crystal

P93

Wilbert J. Smit, Huib J. Bakker FOM Institute AMOLF, AMSTERDAM, The Netherlands

Water molecules in lithium nitrate trihydrate have a well-defined geometrical arrangement and contain three distinct hydrogen-bond strengths: strong, bifurcated, and weak. The vibrational relaxation dynamics of the three distinct OD stretch vibrations of dilute HDO molecules is studied using 2D IR pump-probe spectroscopy in the temperature range 22-295 K.

Vibrational Spectroscopy and Dynamics of $W(CO)_6$ in Solid Methane as a Probe of Lattice Properties

<u>Wutharath Chin</u>¹, Raphaël Thon², Didier Chamma³, Jean-Pierre Galaup⁴, Claudine Crépin¹

P95

¹ISMO CNRS-Univ. Paris Sud, ORSAY, France ²CNRS DR4, GIF-SUR-YVETTE, France ³LAMPS Univ. de Perpignan, PERPIGNAN, France ⁴LAC CNRS-Univ. Paris Sud, ORSAY, France

The phase transition of solid methane is observed through the vibrational spectroscopy of $W(CO)_6$ guest molecule and through its dynamics characterized by time-resolved four-wave mixing experiments. The specificities of the methane lattice are highlighted by surprising behaviors in the vibrational dynamics of the guest in the 5-35 K temperature range.

Direct Observation of Liquid-Liquid Transitions in Aqueous Solutions

P97 Sander Woutersen¹, Michiel Hilbers¹, Jeroen R. Bruijn¹, Tibert H. Van der Loop¹, C. Austen Angell² ¹University of Amsterdam, AMSTERDAM, The Netherlands ²School of Molecular Sciences, Arizona State University, TEMPE (AZ), United States of America

We investigate structural changes during liquid-liquid transitions in supercooled aqueous solutions. In glycerol solution the transition involves nanoscopic phase separation, but in N_2H_5TFA solution both liquid states are homogeneous at the molecular level. The implied existence of two liquid phases in supercooled water provides a unified explanation for its anomalies.

Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy

P99 <u>G. Fumero</u>¹, G. Batignani^{1,2}, S. Mukamel³, T. Scopigno¹

¹Dipartimento di Fisica, Sapienza, Università di Roma. ²Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila. ³Department of Chemistry, University of California, Irvine.

We introduce a general theoretical description of non-resonant 2D broadband stimulated Raman spectroscopy in a multimode model. Upon impulsive excitation, coherences induced in the low frequency modes modulate the Raman signal in time. Monitoring the transmitted intensity, we elucidate the mechanism underlying the energy redistribution pathway between probe field modes.

Poster Session II (Even Numbers)

11:00

Friday, July 1

Vibrational-Coherence Measurement of Nonequilibrium Quantum Systems by Four-Wave Mixing

P02 Alexander Schubert¹, <u>Cyril Falvo</u>², Christoph Meier³ ¹University of Michigan, ANN ARBOR, United States of America ²ISMO, Univ. Paris-Sud, Université Paris-Saclay, ORSAY, France ³LCAR, IRSAMC, Université Paul Sabatier, TOULOUSE, France

Within a four wave mixing set up, coherences in non-equilibrium quantum systems are shown to lead to signal emission in directions opposite to the ones usually considered. Since this emission is generated uniquely by the coherences, a background-free measurement should be possible by placing the detectors in specific, unconventional directions.

Coherent Vibrational Coupling in Singly Fused Diporphyrins

P04

Andre Al Haddad¹, <u>Lars Mewes</u>¹, Jesse Bergkamp², Silvio Decurtins², Majed Chergui¹ ¹EPFL, LAUSANNE, Switzerland ²University of Bern, BERN, Switzerland

Electronic and vibrational dynamics of singly-fused diporphyrins with different metal centers are studied by 2D visible spectroscopy and ultrafast transient absorption spectroscopy. By investigating the timescales between 10 fs and 7 ps, we witness the rise of the coupling between the Q bands.

Structural Transformations and Hydrogen Bond Reorganization of Liquid Water Under High-Pressure Conditions

P06

<u>Andrea Lapini</u>¹, Chiara Calvagna¹, Samuele Fanetti¹, Marco Pagliai², Margherita Citroni¹, Mariangela di Donato¹, Sandro Scandolo³, Roberto Righini¹, Roberto Bini¹

¹University of Florence, SESTO FIORENTINO (FIRENZE), Italy ²Scuola Normale Superiore di Pisa, PISA, Italy ³International Centre for Theoretical Physics, TRIESTE, Italy

We used Non-linear Infrared Spectroscopy (pump-probe and 2D-IR) to study the structural modification and the hydrogen bond reorganization in pure water and in aqueous ionic solution as a function of pressure and temperature.

Time-Frequency Methods for Coherent Spectroscopy

P08 <u>Andrea Volpato</u>, Elisabetta Collini University of Padova, PADOVA, Italy

P12

Time-frequency decomposition techniques, borrowed from the signal-processing field, are adapted and applied to the analysis of 2D oscillating signals. Synthetic signals are used to optimize and benchmark the performances of several time-frequency approaches. The methods are applied on sample 2D electronic spectroscopy data of a common dye.

Are Cataracts an Amyloid Disease? 2D IR Spectra Say YES!

P10 <u>Ariel M. Alperstein</u>, Tianqi O. Zhang, Martin T. Zanni University of Wisconsin-Madison, MADISON, WISCONSIN, United States of America

Cataracts are caused by the aggregation of proteins in the eye lens. Many *in vitro* experiments result in amyloid fibrils, but no fibrils have been found in the lens tissue. We measure cataractous lens tissue using 2D IR spectroscopy and observe the cross peak signature of amyloid fibril formation.

Photoluminescence Anisotropy in Organic Semiconducting Single Crystals

<u>Artur Mannanov</u>¹, Maxim S. Kazantsev², Oleg V. Borshchev³, Sergey A. Ponomarenko³, Dmitry Yu. Paraschuk⁴, Maxim S. Pshenichnikov¹ ¹University of Groningen, GRONINGEN, Netherlands

²Vorozhtsov Novosibirsk Institute of Organic Chemistry, NOVOSIBIRSK, Russian Federation

³Institute of Synthetic Polymer Materials, RAS, MOSCOW, Russian Federation ⁴Faculty of Physics & International Laser Center, Lomonosov Moscow State Universi, MOSCOW, Russian Federation

Time-resolved photoluminescence (PL) anisotropy is studied in novel thiophene-phenylene co-oligomers single crystals. PL is mainly polarized along the molecular backbones regardless of the excitation polarization. PL induced by orthogonal polarizations, has very different time signatures. The origin of such PL behavior is discussed in relation to the molecular packing.

Observation of Long-Lived Coherence in the Metalorganic System Cobalt/Alq3

<u>Bernhard Huber</u>¹, Martin Aeschlimann², Tobias Brixner¹, Mirco Cinchetti², Norman Haag², Matthias Hensen¹, Christian Kramer¹, Walter Pfeiffer³, Martin Piecuch², Christian Schneider², Benjamin Stadtmüller²,

Philip Thielen²

P14

¹IPTC University of Wuerzburg, WUERZBURG, Germany ²Kaiserslautern University of Technology, KAISERSLAUTERN, Germany ³University of Bielefeld, BIELEFELD, Germany

The hybrid metalorganic interface Co/Alq3 is investigated with kinetic-energy-resolved coherent 2D photoemission spectroscopy. Long-lived coherent excited states of the adsorbate are probed via coupling to the substrate in a single-photon photoemission process.

Molecular Origin of the Extensibility of Fibrin

P16 <u>Biplab Dutta</u>, Yves Rezus AMOLF, AMSTERDAM, The Netherlands

We report on the design and construction of a novel shear cell for performing in-situ 2DIR spectroscopy on protein gels under mechanical shear. The shear cell will be used to study the molecular origin of the extensibility of fibrin.

Species-selective photochemistry of coumarin-cages by VIPER 2D-IR

P18Carsten Neumann, Daniela Kern-Michler, Luuk J.G.W. van Wilderen,
Nicole Seibert, Matiss Reinfelds, Jan von Cosel, Alexander Heckel,
Irene Burghardt, Jens Bredenbeck
Johann Wolfgang Goethe-Universität, FRANKFURT/MAIN, Germany

We demonstrate the species-selective spectroscopy of a mixture of isotopomers of a photocage. In order to select an isotopomer and monitor its photochemistry, the VIPER 2D-IR pulse sequence is used, employing resonant vibrational pre-excitation followed by an off-resonant visible-pump pulse.

Analytical Solutions to the Bloch Model for Multidimensional Coherent Spectroscopy with Gaussian Pulse Envelopes

P20 Christopher L. Smallwood¹, Travis M. Autry², Steven T. Cundiff³ ¹CU Boulder / NIST, BOULDER, United States of America ²University of Colorado / NIST, BOULDER, United States of America ³University of Michigan, ANN ARBOR, United States of America

We present third-order analytical solutions to the optical Bloch equations under the assumption of perturbative laser pulses with Gaussian envelopes. The treatment shows that off-resonant interactions can affect both signal amplitude and phase.

2D-Photon Echo on Chlorophyll a: Relaxation Dynamics of the $\ensuremath{\mathsf{Q}}_{\ensuremath{\mathsf{y}}}$ band

P22

<u>Cristina Leonardo</u>, Elena Meneghin, Elisabetta Collini University of Padova, PADOVA, Italy

2D-PhotonEcho is particularly suitable in the analysis of coherent relaxation dynamics in complex systems. The use of different laser bandwidths, carefully tuned to sweep specific energy ranges, enables the characterization of dynamics in ChI a involving different vibrational coherences and their description beyond the simplified model of the displaced oscillator.

2D Lineshape of a Fano Model

Daniel Finkelstein-Shapiro¹, Felipe Poulsen², Tõnu Pullerits¹,

P24 Th

Thorsten Hansen²

¹Lund University, LUND, Sweden ²University of Copenhagen, COPENHAGEN, Denmark

We present the analytical expression of the 2D lineshape of a Fano system coupled to a Markovian bath. We discuss its most prominent features as well as the physical parameters of the system that can be accessed.

Structure and Dynamics in Non-canonically H-Bonded RNAs

P26David A. Price, Zachary J. Kartje, Tayler D. Hill, Gisela Cairó Baza, Keith
T. Gagnon, Sean D. Moran
Southern Illinois University Carbondale, CARBONDALE, IL, United States of
America

We are investigating effects of salt conditions on structure in G-rich nucleic acids that are implicated in neurodegenerative diseases. We have observed frequency shifts using FTIR and confirmed structure change in short G-repeat sequences. Using 2D IR spectroscopy, we will examine vibrational coupling and ultrafast dynamics in these RNA complexes.

Two-Dimensional Electronic Spectroscopy of Biomimetic Light-Harvesting Antennas

P28 <u>Elena Meneghin</u>, Marina Gobbo, Andrea Volpato, Luca Bolzonello, Francesca Biscaglia, Elisabetta Collini *University of Padova, PADOVA, Italy*

The structural features that could support quantum phenomena in photosynthesis are quite difficult to unravel in complex biological light-harvesting systems. We designed self-assembling chromophore-peptide conjugates in order to mimic natural antennas and we followed their excitonic states dynamics with two-dimensional electronic spectroscopy.

Isolation and Characterization of Individual Interfacial Quantum Dots Using 2D Coherent Spectroscopy

P30

Eric W. Martin, Steven T. Cundiff

University of Michigan, ANN ARBOR, United States of America

Via an original collinear multidimensional coherent spectroscopy (MDCS) technique, we resolve and measure individual oscillators in a layer of interfacial quantum dots. Only a few oscillators are excited by focusing tightly, which is possible in a fully collinear geometry. Unfolding the signal spectrum in 2D further isolates the emitters.

Quantum Beats in the Fenna-Matthews-Olson Complex

<u>Erling Thyrhaug</u>¹, Marcelo Alcocer¹, Karel Zidek¹, David Bina³, Roel Tempelaar², Thomas L.C. Jansen², Jasper Knoester²,

P32

Donatas Zigmantas¹

¹Lund University, LUND, Sweden ²University of Groningen, GRONINGEN, The Netherlands ³University of South Bohemia, ČESKÉ BUDĚJOVICE, Czech Republic

Long- and short-lived quantum beats observed in the ultrafast dynamics of the FMO complex are studied at cryogenic temperature by polarization-controlled 2D electronic spectroscopy. The observed response can be explained with a straight-forward vibronic model that does not require correlated bath interactions.

Intramolecular Vibrations in 2D Electronic Spectroscopy (2D-ES) under Different Excitation Conditions

P34 <u>Franco V.A. Camargo</u>¹, Harry L. Anderson², Stephen R. Meech¹, Ismael A. Heisler¹ ¹University of East Anglia, NORWICH, United Kingdom ²University of Oxford, OXFORD, United Kingdom

2D-ES is ideally suited to study electronic or vibrational molecular couplings. However, unravelling the origin of the ensuing coherences can prove challenging, as similar features arise from distinct physical processes. Vibrations coupled to electronic transitions are ubiquitous and here we explore their signatures in 2D spectra under different excitation conditions.

Finite Pulse Effects in 2D Electronic Spectroscopies

P36 Václav Perlík¹, Jürgen Hauer², <u>František Šanda¹</u> ¹Charles University Prague, PRAGUE, Czech Republic ²TU Wien, VIENNA, Austria

When modelling experimental 2D spectra, the effects of finite pulse durations are usually neglected to optimize computational costs. We present analytic treatment of finite pulse duration effects on electronic 2D spectra. While k_i and k_{ii} signals are rather robust, the double quantum signal k_{iii} shows unexpected but readily interpreted dependencies.

Probing the Molecular Origin of the Viscosity of Hyaluronic Acid Solutions by 2D-IR Spectroscopy

P38

<u>Giulia Giubertoni</u>, Biplab Dutta FOM Institute Amolf, AMSTERDAM, The Netherlands

We use 2D-IR spectroscopy to study the spectral diffusion dynamics of the carbonyl vibrations of hyaluronic acid in highly viscous solutions. These measurements will provide insight into the molecular origin of the viscosity of these solutions.

Fully Coherent 2D Electronic Spectrometer With Polarization Shaping Capabilities

P40 <u>Hélène Seiler¹</u>, Samuel Palato¹, Brenna Walsh¹, Alex Thai², Nicolas Forget², Pat Kambhampati¹ ¹McGill University, MONTREAL, Canada ²Fastlite, VALBONNE, France

We present a 2D spectrometer for visible spectroscopy based on two acousto-optic pulse shapers arranged in a Mach-Zehnder geometry. The setup enables the production of fully coherent, polarization-shaped pulse trains. Ultimately this feature will be exploited to observe multi-quantum coherences in molecules and colloidal nanostructures.

Two-dimensional Electronic Spectroscopy of Fenna-Matthews-Olson Complex at Ambient Temperature

P42 Hong-Guang Duan¹, Valentyn I. Prokhorenko¹, Richard Cogdell², Khuram Ashraf², Michael Thorwart³, R.J. Dwayne Miller¹ ¹Max-Planck Institute, HAMBURG, Germany ²University of Glasgow, GLASGOW, United Kingdom ³University of Hamburg, HAMBURG, Germany

We have performed the 2D electronic spectroscopy of the Fenna-Matthews-Olson (FMO) complex using a broadband laser source with transform-limited 16-fs pulses. No clear oscillations were observed in a series of 2D spectra at ambient temperature.

Coherent Two-Dimensional Terahertz-Terahertz-Raman Spectroscopy Of Liquids

P44 Ian A. Finneran¹, <u>Marco A. Allodi²</u>, Ralph Welsch¹, Thomas F. Miller III¹, Geoffrey A. Blake¹

¹California Institute of Technology, PASADENA, CA, United States of America ²The University of Chicago, CHICAGO, IL, United States of America

We demonstrate 2D-THz-THz-Raman spectroscopy to investigate the dynamics of liquids. By varying the timing between two intense terahertz pulses, we control the orientation of molecules in the liquid and excite nonlinear vibrational coherences. We have sufficient sensitivity to observe non-rephasing and rephasing nonlinear signals.

A Novel Conformation of PYP Caused by a Vibrational Marker

P46

Jianping Wang, Pengyun Yu, Fan Yang Institute of Chemistry, the Chinese Academy of Sciences, BEIJING, China

Upon the binding of a ruthenium carbonyl complex to photoactive yellow protein, large conformation of the protein occurred, as evidenced by several steady-state spectroscopic methods. Ultrafast local structural dynamics of the newly formed conformation were characterized by ultrafast 2D IR spectroscopy.

Delocalised Terahertz Phonon-Like Modes In Biomolecules

Klaas Wynne¹, <u>Mario González-Jiménez¹</u>, Gopakumar Ramakrishnan¹, Thomas Harwood², Adrian Lapthorn¹, Hans Martin Senn¹, Sharon Kelly³, Elizabeth Ellis²

P48

¹University of Glasgow, GLASGOW, United Kingdom ²Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GLASGOW, United Kingdom ³Institute of Molecular Cell and Systems Biology, University of Glasgow, GLASGOW, United Kingdom

Ultrafast optical Kerr-effect experiments have been carried out on proteins, DNA, and other biomolecules demonstrating the presence of coherent delocalised vibrational modes at physiologically relevant conditions as well as dramatically slowed down (20x) solvation-water dynamics.

Two-Phonon Quantum Coherences in InSb Observed by Two-Dimensional Three-Pulse THz Spectroscopy

P50 <u>Carmine Somma</u>, Giulia Folpini, Klaus Reimann, Michael Woerner, Thomas Elsaesser

Max-Born-Institut, BERLIN, Germany

Two-phonon quantum coherences are observed in the narrow-gap semiconductor InSb by two-dimensional terahertz spectroscopy using three nonresonant THz pulses. The twophonon signals originate from impulsive excitation in the nonperturbative regime of lightmatter interaction mediated by the large interband dipole moment.

Investigation of MoS_2 Exciton Dynamics Using State-Selective Multidimensional Spectroscopy

P52

Kyle J. Czech, Blaise J. Thompson, Schuyler Kain, Song Jin, John C. Wright University of Wisconsin-Madison, MADISON, United States of America

The A and B excitonic states of MoS_2 thin films were investigated using state-selective multidimensional spectroscopy. Interband electron transfer and intraband carrier relaxation is observed on a sub-70 fs timescale, while A and B excitons are observed to decay on a ~680 fs timescale.

Mapping Exciton Localization in Linear TDBC Aggregates by Two-Dimensional Electronic Spectroscopy

P54 <u>Larry Lüer</u>¹, Sai Kiran Rajendran², Julian Rehault², David Lidzey³, Tersilla Virgili², Giulio Cerullo² ¹IMDEA Nanociencia, CANTOBLANCO (MADRID), Spain ²Politecnico di Milano, MILANO, Italy ³University of Sheffield, Sheffield, United Kingdom

Exciton dephasing and relaxation is observed by two-dimensional electronic spectroscopy (2DES) in linear aggregates of TDBC molecules. Combining global analysis with quantum mechanical simulations, we distinguish dephasing from exciton relaxation and quantify the dynamics of exciton localization on specific low energy segments.

Recycling of Singlet Excitons in Organic Bilayers

P56 $\frac{\text{Oleg Kozlov}^1}{^1\text{University of Groningen, GRONINGEN, The Netherlands}}{^2\text{Department of Electrical Engineering, Princeton University, PRINCETON, United States of America}$

Exciton dynamics are studied in C_{60} /Rubrene bilayers with 2D time-resolved photoluminescence. Triplet energy transfer from C_{60} to rubrene, triplet upconversion in rubrene, and back singlet energy transfer from rubrene to C_{60} are demonstrated, which leads to repopulation of the C_{60} singlets pool and increasing C_{60} fluorescence lifetime.

Preferential Solvation: Spectral Dynamic Slowdown of a Rhenium Photocatalyst

P58

<u>Laura Kiefer</u>, Kevin J. Kubarych

University of Michigan, ANN ARBOR, MI, United States of America

Equilibrium 2D IR spectroscopy was used to measure spectral diffusion of the photocatalyst $Re(bpy)(CO)_{3}Cl$ in multiple TEOA/solvent mixtures. The slowest spectral diffusion time was observed in the 20%/80% TEOA/solvent (v/v) mixture, indicating occurrence of preferential solvation.

2DIR Spectroscopy Study of Oxidation - From Biomarker Quantification to Spectral Imaging of Tissue Sections

P60

Lays Rezende Valim¹, Julia A. Davies, Keith R. Willison¹, David R. Klug¹ ¹Imperial College London, LONDON, United Kingdom

Electron-Vibration-Vibration two-dimensional infrared spectroscopy is used here to study oxidation biomarkers, such as 3-nitrotyrosine. We aim to demonstrate how the spectral information obtained through this technique could be used to generate 2DIR images able to map the localisation of biomarkers across healthy and diseased human tissue sections.

Can Solvent Vibrational Modes Generate Coherent Oscillation in Excited Organic Dye?

P62

Luca Bolzonello, Elisabetta Collini

University of Padua, PADOVA, Italy

The coherent excited state dynamics of a charged organic molecule in different solvents have been studied with 2DES. The data demonstrated an unexpected enhancement of a specific vibrational mode of the molecule promoted by the coupling with a resonant mode of the solvent.

Background-Free Fourth-Order Optical Spectroscopy of Interfaces

P64 Michael Schleeger, <u>Maksim Grechko</u>, Mischa Bonn

Max-Planck Institute for Polymer Research, MAINZ, Germany

Recent development of the two-dimensional sum-frequency generation spectroscopy has enabled an insight into the molecular vibrational dynamics at interfaces. Its implementation, however, has so far remained limited to the pump-probe geometry, with its inherent restrictions. Here, we report proof-of-concept background-free measurements of the fourthorder susceptibility using non-collinear optical layout.

A broadband Femtosecond Time-Resolved Circular Dichroism Spectrometer in The Near-UV

P66

<u>Malte Oppermann</u>, Thomas Rossi, Frank van Mourik, Majed Chergui Laboratory for Ultrafast Spectroscopy, LAUSANNE, Switzerland

A femtosecond time-resolved circular dichroism setup operating at 20 kHz in the near-UV spectral range is presented. The spectrometer employs broadband probe (260 - 360 nm) and tunable narrowband pump pulses (1.5 nm FWHM) over the same spectral range.

Influence of H-aggregate Formation on The Photophysics of a Push-Pull Phtalocyanine

P68 Sandra Doria, Nicolò Azzaroli, Andrea Lapini, Alessandro Iagatti, Paolo Foggi, Roberto Righini, <u>Mariangela Di Donato</u> LENS-University of Florence, SESTO FIORENTINO, Italy

The relaxation dynamics of a push-pull Zn-phtalocyanine has been investigated by means of two-dimensional electronic spectroscopy and narrow-band transient absorption spectroscopy. The photophysics of monomer solution and H-aggregates have been compared on a time scale spanning from a few tens of femtoseconds up to 1.5 nanoseconds.

Three-Pulse Photon Echo Spectra at Conical Intersections: Model Dissipative Quantum Dynamical Studies

P70

Matthieu Sala, Dassia Egorova

Institute of Physical Chemistry, KIEL, Germany

Three-pulse photon echo signals for two model systems exhibiting strong vibronic interactions mediated by conical intersections are simulated using the equation-of-motion phase-matching approach combined with a dissipative treatment of the quantum dynamics.

Can We Throw Away Our OPA? Two-Dimensional White Light Spectroscopy at 100 kHz

P72 <u>Nicholas Kearns</u>, Andrew C. Jones, Randy D. Mehlenbacher, Martin T. Zanni

University of Wisconsin-Madison, MADISON, United States of America

We report on a two-dimensional white light spectrometer using a 100 kHz Spirit laser, pulse shaper, and supercontinuua for both pump and probe. We show that high repetitions rates coupled with shot-to-shot delay scanning gives sufficient signal-to-noise such that spectra can be collected rapidly on a variety of interesting systems.

100 kHz Tunable Mid-IR Source for 2D-IR Spectroscopy

P74 Raman Maksimenka, Alexandre Thai, Clément Ferchaud, Nicolas Thiré, <u>Nicolas Forget</u> *Fastlite, VALBONNE, France*

We present a 100-kHz parametric source delivering 40-fs pulses with an average output power of ~1 W. This source is tunable from 2.5 to 4.0 μ m and delivers idler pulses in the 1.4-1.75 μ m spectral range.

Signaling Transduction Pathway of AsLOV2 Revealed by Time-Resolved Vibrational Spectroscopy

P76

Patrick E. Konold, Tilo Mathes, John T.M. Kennis VU University Amsterdam, AMSTERDAM, The Netherlands

Transient vibrational spectroscopy was used to investigate the photoactivation mechanism of LOV2 from *Avena sativa* (AsLOV2). Ultrafast relaxation reveals singlet to triplet conversion of the flavin chromophore. Slower microsecond components represent formation of the cysteinyl-flavin adduct and unfolding of the J α helix.

Coherent Dynamics of Phosphate Ions in Bulk H₂O

P78 <u>Rene Costard</u>, Tobias Tyborski, Benjamin P. Fingerhut *Max-Born-Institute Berlin, BERLIN, Germany*

We investigate dynamics of phosphate stretching vibrations of the ion $H_2PO_4^-$ dissolved in H_2O combining 2D-IR spectroscopy with mixed quantum-classical simulations. Dominantly homogeneously broadened lines are caused by ultrafast librational motions of hydration shell water. Cross peak dynamics reveal vibrational quantum beats with a lifetime of a few hundred femtoseconds.

In Silico Characterization of Polymer-Fullerene Organic Photovoltaic Bulk Heterojunctions

<u>Riccardo Alessandri</u>^{1,2}, Alex H. de Vries^{1,2}, Remco W. A. Havenith^{1,3,4}, Siewert J. Marrink^{1,2}

P80

¹Zernike Institute for Advanced Materials, University of Groningen, GRONINGEN, The Netherlands

²Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, GRONINGEN, The Netherlands

³Stratingh Institute for Chemistry, University of Groningen, GRONINGEN, The Netherlands

⁴Ghent University, GHENT, Belgium

In organic photovoltaic materials an ultrafast electron transfer starts the (eventual) charge separation process. The morphology of the active layer impacts the different pathways which this first step can lead to. This is investigated via a range of computational techniques, which allows to consider the relevant length and time scales.

Self-Compressed Visible Supercontinuum from 100 fs Pulses Using a Hollow-Core Fiber

P82

Samuel Palato, Hélène Seiler, Patanjali Kambhampati

McGill University, MONTREAL, Canada

We report the generation of visible supercontinuum from 100 fs Ti:Sapphire output in a single stage using a 2.57 m long hollow-core fiber in Ar. The impact of input energy and gas pressure on the output pulse are studied. This source exhibits self-compression, high transmission and good long-time stability.

Rapid-Scan 2D Fluorescence Spectroscopy

P84 Simon Draeger, Sebastian Roeding, Andreas Steinbacher, Jakub Dostál, Tobias Brixner

Universität Würzburg, WÜRZBURG, Germany

We implement liquid-phase 2D spectroscopy with collinear four-pulse excitation and fluorescence detection. Pulse-sequence parameters are varied on a shot-to-shot basis using a fast pulse shaper. A complete set of all third-order signals (photon echo, double-quantum coherence, etc.) is acquired via 27-fold phase cycling in just 6 s plus averaging.

Detection and Assignment of Inhibitor-Protein Interactions from EVV 2DIR Data

P86 Hugh Sowley¹, Sophie Sim¹, Julia Davies, Keith Willison¹, David Klug¹, Zhiqiang Liu³, Wei Zhuang³ ¹Imperial College London, LONDON, United Kingdom ³Dalian Institute of Chemical Physics, DALIAN, China

Electron-vibration-vibration (EVV) 2DIR spectroscopy is used to investigate inhibitor binding to mammalian and plant proteins. We demonstrate the ability to detect inhibitor binding, and suggest potential applications in label-free screening and identification of previously unknown binding sites.

Evidence for Intramolecular Antiparallel β -Sheet Structure in α -Synuclein Fibrils Aggregated Under Physiological Conditions

P88

8 <u>Steven J. Roeters</u>¹, Aditya Iyer², Vinod Subramaniam², Sander Woutersen¹ ¹University of Amsterdam, AMSTERDAM, The Netherlands ²FOM Institute AMOLF, AMSTERDAM, The Netherlands

The aggregation of a-synuclein into fibrils in the presence of varying NaCl concentrations is studied with AFM and 2D-IR spectroscopy, and complemented with spectral calculations to assign the spectra. We find different fibril structures depending on whether the protein is aggregated in <25 mM or >25 mM NaCl buffer solution.

Comparing Active Site Dynamics and Catalytic Activity in a Thermophilic Enzyme

P90 <u>Tayler D. Hill</u>, David A. Price, Hannah H. Lepird, Kaitlyn A. Hutson, Sean D. Moran *Southern Illinois University Carbondale, CARBONDALE, United States of America*

Enzyme-substrate dynamics under changing reaction conditions in a hyperthermophilic enzyme are studied with FTIR and 2D IR spectroscopy. The labeling scheme exploits the enzyme's promiscuity, allowing a cyanylated N-phenylmaleimide to probe the local electric field of the enzyme's active site and an analogous covalent substrate allows for single-turnover kinetics studies.

2D Electronic Spectra of Electron Transfer

P92 <u>Thorsten Hansen</u>

University of Copenhagen, COPENHAGEN, Denmark

We use non-equilibrium Green's functions to describe 2D spectra of Marcus electron transfer.

Transient Non-Equilibrium Ground State Signals in 2D Spectra due to Energy Transfer

P94 <u>Tomáš Mancal</u>¹, David Paleček ², Donatas Zigmantas² ¹Charles University Prague, PRAGUE, Czech Republic

²Lund University, LUND, Sweden

Spectral features of energy transferring photosynthetic pigments are studied theoretically. We identify electronic ground state signals due to non-equilibrium state of nuclear vibrations resulting from de-excitation of pigments as the excitation passes through. We find characteristic long lived signals with unusual amplitude dependences on energy transfer rates and energetic disorder.

Broadband 2D Electronic Spectroscopy by Hollow-Fiber Compression

P96

<u>Xiaonan Ma</u>, Jakub Dostál, Tobias Brixner

Institut für Physikalische und Theoretische Chemie, Universität Würzburg, WÜRZBURG, Germany

We demonstrate broadband diffractive-optic-based 2D electronic spectroscopy (500-700 nm). Pulses are generated in an argon-filled hollow fiber pumped by a Ti:Sa laser and compressed to sub-7-fs duration at the sample position using dispersive mirrors. The fiber provides a clean spatial profile and thus avoids problems arising from spatial chirp.

Molecular Dynamics on Microbial Rhodopsins Probed by Timeresolved Vibrational Spectroscopy

P98 <u>Yusaku Hontani</u>¹, Jörn Weiβenborn¹, Patrick E. Konold¹, Peter Hegemann², John T.M. Kennis¹ ¹VU University Amsterdam, AMSTERDAM, The Netherlands ²Humboldt-Universität, BERLIN, Germany

Microbial rhodopsins are light-driven proteins having various functions such as proton pump, ion channel and cation pump. For many microbial rhodopsins, the molecular dynamics in between picoseconds and microseconds after photon absorption is unclear. We apply time-resolved stimulated Raman and two-dimensional infrared spectroscopies to elucidate transient reactions in microbial rhodopsins.

Resolving Structural Dynamics In Blue-Light Photoreceptors Through 2D IR Spectroscopy

P100 Jörn Weißenborn¹, Patrick Konold¹, John T.M. Kennis¹, Jennifer Mehlhorn², Peter Hegemann², Tilo Mathes¹ ¹VU University Amsterdam, AMSTERDAM, The Netherlands ²Humboldt University Berlin, BERLIN, Germany

BLUF domains constitute a class of blue-light photoreceptors that show light-induced conformational changes ranging from ultrafast sidechain fluctuations to large scale changes in secondary structure. Here, we present results from 2D IR spectroscopy on an isotopically labelled BLUF domain to investigate its photoswitching mechanism.

State-resolved Dynamics in Structurally Precise Monolayer-Protected Gold Clusters Using Two-Dimensional Electronic Spectroscopy

P102 <u>Kenneth L. Knappenberger Jr.</u>¹, Giulio Cerullo², Tatjana Stoll², Patrick J. Herbert¹, Jeremy W. Jarrett¹ ¹*Florida State University, TALLAHASSEE, United States of America* ²*Politecnico di Milano, MILANO, Italy*

Superatom state-resolved electron relaxation dynamics of structurally precise $Au_{25}(SC_8H_9)_{18}$ nanoclusters were studied using Two-Dimensional Electronic Spectroscopy. The 2-D data allowed for for hot electron and hot hole carrier dynamics occuring in the < 300 fs time scale to be distinguished.

Exciton Delocalization in the Amide I Band of a Protein-Like Liquid

P104 Ana V. Cunha¹, Evgeniia Salamatova¹, Robbert Bloem², Steven J. Roeters², Sander Woutersen², Maxim S. Pshenichnikov¹, Thomas L.C. Jansen¹ ¹University of Groningen, GRONINGEN, The Netherlands ²University of Amsterdam, AMSTERDAM, The Netherlands

The exciton delocalization in the amide I band of neat N-methylacetamide is studied with 2D IR spectroscopy. The spectra consist of a diagonally elongated peak and a narrower shoulder assigned to delocalized excitons. According to the inverse participation ratio, the excitons are delocalized over tens of amide I oscillators.

List of Participants

Riccardo	Alessandri	University of Groningen	r.alessandri@rug.nl	P80	NL
Marco A.	Allodi	University of Chicago	mallodi@uchicago.edu	P44	US
Ariel M.	Alperstein	University of Wisconsin	aalperstein @chem.wisc.edu	P10	US
Ellen H. G.	Backus	Max Planck Institute	Backus @mpip-mainz.mpg.de	Th01	DE
Carlos R.	Baiz	University of Texas	cbaiz@cm.utexas.edu	P21	US
Huib J.	Bakker	AMOLF Amsterdam	h.bakker@amolf.nl	P19, P93	NL
Artem A.	Bakulin	Imperial College London	a.bakulin @imperial.ac.uk	Th10	GB
Mark A.	Berg	University of South Carolina	berg@sc.edu	Th08	US
Herman	ten Berge	Acal BFi NL/ Infrared Systems	Herman.Ten-Berge @acalbfi.nl	Exhibition	NL
Laurie A.	Bizimana	New York University	Law461@nyu.edu	P49	US
Robbert	Bloem	University of Amsterdam	r.bloem@uva.nl	P104	NL
Luca	Bolzonello	University of Padua	luca.bolzonello @outlook.com	P28, P62	IT
Anna S.	Bondarenko	University of Groningen	a.bondarenko@rug.nl	P05, P11	NL
Adeline	Bonvalet	Laboratory for Optics & Biosciences	adeline.bonvalet @polytechnique.fr	P25, Fr09	FR
Olga R.	Bozovic	University of Zürich	olga.bozovic @chem.uzh.ch	P69	СН
Federico	Branchi	Polytechnic University of Milan	federico.branchi @polimi.it	P79	IT
Jens	Bredenbeck	Goethe University Frankfurt	Bredenbeck @biophysik.org	We02, P51, P18, We17	DE
Tobias	Brixner	University of Würzburg	brixner@phys- chemie.uni- wuerzburg.de	We14, P14, P84, P96	DE
Franco V. A.	Camargo	University of East Anglia	F.Valduga-De-Almeida- Camargo@uea.ac.uk	P34, Fr04	GB
Majed	Chergui	EPFL	majed.chergui@epfl.ch	We06, P04, P66, P67	СН
Wutharath	Chin	ISMO	wutharath.chin @u-psud.fr	P95	FR
Minhaeng	Cho	Institute for Basic Science	mcho@korea.ac.kr	Fr08, P01, We12	KR

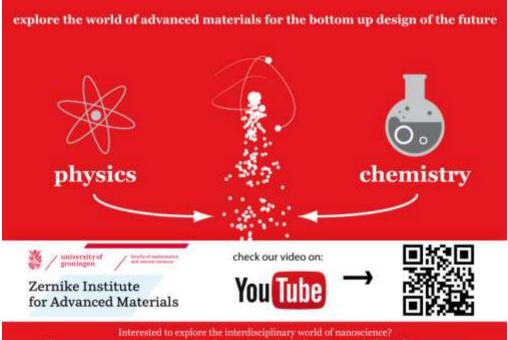
Jeffrey A.	Cina	University of Oregon	cina@uoregon.edu	We16	US
Elisabetta	Collini	University of Padova	elisabetta.collini @unipd.it	Fr06, P08, P22, P28, P62	IT
Rene	Costard	Max Born Institute	costard@mbi-berlin.de	P78	DE
Claudine	Crépin-Gilbert	CNRS	claudine.crepin- gilbert@u-psud.fr	P95	FR
Steven T.	Cundiff	University of Michigan	cundiff@umich.edu	Th13, P20, P30	US
Ana V.	Cunha	University of Groningen	a.m.de.carvalho.vicente. da.cunha@rug.nl	P05, P31, P35, P104	NL
Kyle J.	Czech	University of Wisconsin-Madison	kjczech2012@gmail.com	P52	US
Kimberly R.	Daley	University of Michigan	krdaley@umich.edu	P47	US
Jeffrey A.	Davis	TU Swinburne	JDavis@swin.edu.au	We15	AU
Antonietta	De Sio	University of Oldenburg	antonietta.de.sio @uni-oldenburg.de	We11, P39	DE
Mariangela	Di Donato	LENS	didonato@lens.unifi.it	P06, P68	IT
Arend G.	Dijkstra	Max Planck Institute	arend.dijkstra @mpsd.mpg.de	P13	DE
Paul	Donaldson	Central Laser Facility	paul.donaldson @stfc.ac.uk	P33, P71, We07	GB
Danny	van Dongen	Acal BFi NL/ Infrared Systems	danny.van.dongen @acalbfi.nl	Exhibition	NL
Sandra	Doria	LENS	doria@lens.unifi.it	P68	IT
Simon	Draeger	University of Würzburg	simon.draeger @phys-chemie.uni- wuerzburg.de	P84	DE
Hong- Guang	Duan	Max-Planck Institute	Hong-Guang.Duan @mpsd.mpg.de	P37, P42	DE
Biplab	Dutta	AMOLF	B.Dutta@amolf.nl	P16, P38	NL
Youssef	El Khoury	IPCMS	Elkhoury @ipcms.unistra.fr	We17	FR
Thomas	Elsaesser	Max Born Institute	elsasser@mbi-berlin.de	Th05, P61, P50	DE
Hans-Ulrich	Emmerichs	Coherent GmbH	Deniz.Cagri @Coherent.com	Exhibition	DE
Cyril	Falvo	CNRS	cyril.falvo@u-psud.fr	P25, P02	FR
Marwa	Farag	University of Groningen	marwa.farag@rug.nl	P59	NL
Daniel	Finkelstein- Shapiro	Lund University	daniel.f.s.84@gmail.com	P24	SE
Giulia	Folpini	Max-Born-Institut	folpini@mbi-berlin.de	P61, P50	DE
Nicolas	Forget	Fastlite	forget@fastlite.com	P40, P74, Exhibition	FR

Giuseppe	Fumero	Università di Roma	giuseppe.fumero @uniroma1.it	P99	IT
Sean	Garrett-Roe	University of Pittsburgh	sgr@pitt.edu	Th09	US
Maxim F.	Gelin	TU Munich	maxim.gelin@gmail.com	Fr11, P29	DE
Tobias A.	Gellen	New York University	tobiasgellen@gmail.com	P83	US
Andrius	Gelžinis	Vilnius University	andrius.gelzinis@ff.vu.lt	P09	LT
Giulia	Giubertoni	AMOLF	giubertoni@amolf.nl	P38	NL
Mario	González- Jiménez	University of Glasgow	mario.gonzalezjimenez @glasgow.ac.uk	P48	GB
Maksim	Grechko	MPIP	grechko@mpip- mainz.mpg.de	P64	DE
Pascal	Grégoire	University of Montréal	pascal.gregoire.2@umo ntreal.ca	Th11	CA
Carien C.M.	Groot	AMOLF	cgroot@amolf.nl	P19	NL
Peter	Hamm	University of Zürich	peter.hamm@chem.uzh .ch	Th06, P07, P35, P41, P69, P75	СН
Thorsten	Hansen	University of Copenhagen	thorsten@chem.ku.dk	P24, P92	DK
Ismael A.	Heisler	University of East Anglia	i.heisler@uea.ac.uk	Fr04, P34	GB
Jan	Helbing	University of Zürich	jan.helbing @chem.uzh.ch	Th14	СН
Tayler D.	Hill	Southern Illinois University	taylerhill@siu.edu	P26, P90, Th16	US
Gordon	Hithell	University of Strathclyde	gordon.hithell.2013 @uni.strath.ac.uk	P33, We07	GB
Yusaku	Hontani	VU Amsterdam	yusaku.hontani@vu.nl	P98	NL
Bernhard	Huber	University of Würzburg	bernhard.huber @phys-chemie.uni- wuerzburg.de	P14	DE
Neil T.	Hunt	University of Strathclyde	neil.hunt@strath.ac.uk	We07, P33	GB
Ken-ichi	Inoue	RIKEN	ken-ichi.inoue@riken.jp	Th02	JP
Thomas L.C.	Jansen	University of Groningen	t.l.c.jansen@rug.nl	P05, P11, P31, P32, P35, P59, P77, P81, P104	NL
Philip J.M.	Johnson	University of Zürich	philip.johnson@uzh.ch	P69, P75	СН
Pat	Kambhampati	McGill University	pat.kambhampati @mcgill.ca	P40, P82	CA
Khadga J.	Karki	Lund University	Khadga.Karki @chemphys.lu.se	P45, Fr03	SE
Nicholas	Kearns	University of Wisconsin	nicholas.kearns @wisc.edu	P72	US

Vincent	Kemlin	Laboratory for Optics & Biosciences	vincent.kemlin @ipcms.unistra.fr	Fr09, P25	FR
Laura	Kiefer	University of Michigan	lmkiefer@umich.edu	P58, We01	US
Miroslav	Kloz	ELI Beamlines	miroslav.kloz @eli-beams.eu	P63	cz
David R.	Klug	Imperial College London	d.klug@imperial.ac.uk	Th17, P60, P86	GB
Kenneth L.	Knappenberger	Florida State University	klk@chem.fsu.edu	P102	US
Jasper	Knoester	University of Groningen	j.knoester@rug.nl	P11, P59, P77, P81, P32	NL
Patrick E.	Konold	VU University Amsterdam	p.e.konold@vu.nl	P76, P98, P100	NL
Valeri	Kozich	Free University of Berlin	kozich@zedat.fu- berlin.de	P87	DE
Oleg	Kozlov	University of Groningen	o.kozlov@rug.nl	P56	NL
Jan Philip	Kraack	University of Zürich	philip.kraack @chem.uzh.ch	P41	СН
Björn	Kriete	University of Groningen	B.Kriete@rug.nl	P15	NL
Amber T.	Krummel	Colorado State University	amber.krummel @colostate.edu	Fr10	US
Kevin J.	Kubarych	University of Michigan	Kubarych@umich.edu	We01, P47, P89, P58	US
Achintya	Kundu	Korea University	achintya2007 @gmail.com	P01	KR
Tenzin	Kunsel	University of Groningen	t.kunsel@rug.nl	P81	NL
Kyungwon	Kwak	Institute for Basic Science	kkwak@korea.ac.kr	We12	KR
Andrea	Lapini	LENS	lapini@lens.unifi.it	P06, P68	IT
Marco	Lentjes	Coherent GmbH	Deniz.Cagri @coherent.com	Exhibition	DE
Cristina	Leonardo	University of Padova	cristina.leonardo @studenti.unipd.it	P22	IT
Nicholas H.C.	Lewis	University of California	nhclewis@berkeley.edu	P65	US
Zengzhao	Li	Max Planck Institute	zengzhao@pks.mpg.de	P27	DE
James	Lim	University of Ulm	james.lim@uni-ulm.de	P39, We11	DE
Larry	Lüer	IMDEA Nanoscience	larry.luer@imdea.org	P54	ES
Xiaonan	Ma	University of Würzburg	xiaonan.ma @phys-chemie.uni- wuerzburg.de	P96	DE

Tomáš	Mancal	Charles University	mancal @karlov.mff.cuni.cz	P85, P94	cz
Arthur	Mannanov	University of Groningen	a.a.mannanov@rug.nl	P12	NL
Andrew H.	Marcus	University of Oregon	ahmarcus@uoregon.edu	We09	US
Eric W.	Martin	University of Michigan	ewmartin@umich.edu	P30	US
Elena	Meneghin	University of Padova	elena.meneghin.2 @studenti.unipd.it	P22, P28	IT
Lars	Mewes	EPFL	lars.mewes@epfl.ch	P04, P67, We06	СН
R. J. Dwayne	Miller	MPSD	nadja.bardenheuer @mpsd.mpg.de	P03, P13, P37, P42, We08	DE
Sean D.	Moran	Southern Illinois University	smoran@chem.siu.edu	Th16, P26, P90	US
Carsten	Neumann	Goethe University Frankfurt	Neumann @biophysik.uni- frankfurt.de	P51, P18	DE
Jennifer P.	Ogilvie	University of Michigan	jogilvie@umich.edu	Fr01, P09, P91	US
Masaki	Okuda	Kobe University	120s205s @stu.kobe-u.ac.jp	P43, Th04	JP
Malte	Oppermann	EPFL	malte.oppermann @epfl.ch	P66 <i>,</i> We06	СН
Elisa	Palacino González	TU Munich	elisa.palacino @ch.tum.de	P29	DE
Samuel	Palato	McGill University	samuel.palato @mail.mcgill.ca	P40, P82	CA
David	Paleček	University of Zürich	david.palecek @chem.uzh.ch	Fr02, P94	СН
Maxim S.	Pshenichnikov	University of Groningen	m.s.pchenitchnikov @rug.nl	P15, P31, P56, P12, P104	NL
Václav	Perlík	Charles University	vaclav.perlik @gmail.com	P85, P36	CZ
Alessandra	Picchiotti	Max Planck Institute	alessandra.picchiotti @mpsd.mpg.de	P03, P13, We08	DE
Veronica	Policht	University of Michigan	vpolicht@umich.edu	P91, Fr01	US
David A.	Price	Southern Illinois University	dp88@siu.edu	P26, P90, Th16	US
Valentyn I.	Prokhorenko	Max Planck Institute	valentyn.prokhorenko @mpsd.mpg.de	We08, P03, P13, P37, P42	DE
Tõnu	Pullerits	Lund University	tonu.pullerits @chemphys.lu.se	Fr03, P45, P24	SE

		Academy of	Mateusz.Rebarz		
Mateusz	Rebarz	Sciences of the Czech Republic	@eli-beams.eu		CZ
Lays	Rezende Valim	Imperial College London	lrg11@ic.ac.uk	P60	GB
Yves L.A.	Rezus	AMOLF	rezus@amolf.nl	Th15, P16	NL
Marten	Richter	TU Berlin	Mrichter @itp.tu-berlin.de	P55	DE
Magnus	Ringholm	СТСС	magnus.ringholm @uit.no	P53	NO
Sean T.	Roberts	University of Texas	roberts@cm.utexas.edu	Th12	US
Steven J.	Roeters	University of Amsterdam	sroeters@gmail.com	P88, P104	NL
Ved Prakash	Roy	University of Michigan	vproy@umich.edu	P89	US
Jisu	Ryu	University of Colorado	jisu.ryu@colorado.edu	We13	US
Matthieu	Sala	University of Kiel	matthieusala @gmail.com	P70	DE
Evgeniia	Salamatova	University of Groningen	e.salamatova@rug.nl	P31, P104	NL
František	Šanda	Charles University	Sanda @karlov.mff.cuni.cz	P85, P36	CZ
Paul J.	Sanstead	University of Chicago	psanstead @uchicago.edu	P73	US
Hélène	Seiler	McGill University	helene.seiler @mail.mcgill.ca	P40, P82	CA
Andrey	Shalit	University of Zürich	andrey.shalit @chem.uzh.ch	P07, P35, Th06	СН
Qiang	Shi	Chinese Academy of Sciences	qshi@iccas.ac.cn	Fr07	CN
Sophie	Sim	Imperial College London	s.sim@imperial.ac.uk	P86	GB
Christopher L.	Smallwood	University of Colorado	chris.smallwood @colorado.edu	P20	US
Wilbert J.	Smit	AMOLF	smit@amolf.nl	P93	NL
Carmine	Somma	Max Born Institute	somma@mbi-berlin.de	P50	DE
Hugh	Sowley	Imperial College London	hugh.sowley12 @imperial.ac.uk	P86, Th17	GB
Howe-Siang	Tan	TU Nanyang	HOWESIANG @NTU.EDU.SG	Fr05, P23	SG
Roel	Tempelaar	Columbia University	rt2609@columbia.edu	P77, P32	US
Martin	Thämer	Fritz Haber Institute	Thaemer @fhi-berlin.mpg.de	P57, Th03	DE
Blaise J.	Thompson	University of Wisconsin	Bthompson @chem.wisc.edu	P17, P52	US
Erling	Thyrhaug	Lund University	erling.thyrhaug @chemphys.lu.se	P32	SE


Andrei	Tokmakoff	University of Chicago	Tokmakoff @uchicago.edu	Th03, P57, P73	US
Keisuke	Tominaga	Kobe University	tominaga@kobe-u.ac.jp	Th04, P43	JP
Pascal	Tournois	Fastlite	pascal.tournois @fastlite.com	Exhibition	FR
Kathryn	Tracy	Colorado State University	kathryn.tracy @colostate.edu	Fr10	US
Halina	Tran	University of Zürich	halina.tran @chem.uzh.ch	P35	СН
Peter	Vöhringer	University of Bonn	p.voehringer @uni-bonn.de	We04	DE
Andrea	Volpato	University of Padova	andrea.volpato.2 @studenti.unipd.it	P08, P28	IT
Jianping	Wang	ICCAS	jwang@iccas.ac.cn	P46	CN
Alexander	Weigel	UltraFast Innovations	weigel@ultrafast- innovations.com	Exhibition	DE
Jörn	Weißenborn	VU Amsterdam	j.weissenburn@vu.nl	P63, P98, P100	NL
Douwe	Wiersma	University of Groningen	d.a.wiersma@rug.nl	Honorable guest	NL
Luuk J.G.W.	van Wilderen	Goethe University Frankfurt	Vanwilderen @biophysik.org	P51, P18, We17	DE
Sander	Woutersen	University of Amsterdam	s.woutersen@uva.nl	P97, P88, P104	NL
John C.	Wright	University of Wisconsin	wright@chem.wisc.edu	We05, P17, P52	US
Wei	Xiong	University of California	w2xiong@ucsd.edu	We03	US
Martin T.	Zanni	University of Wisconsin	zanni@chem.wisc.edu	We10, P10, P72	US
Claudio	Zanobini	University of Zürich	claudio.zanobini@chem. uzh.ch	P69	СН
Cheng	Zhang	TU Nanyang	czhang019 @e.ntu.edu.sg	P23	SG
Wei	Zhuang	FJIRSM	wzhuang@fjirsm.ac.cn	Th07, P86, Th17	CN

Zernike Institute for Advanced Materials

You want to build the next generation of solar cells, starting from molecular building blocks? You want to change the world of computing by assembling revolutionary memory materials atom-byatom? Or you want to develop materials preventing or curing disease? Then have a look at the Bachelor, Master and PhD programs related to and inspired by the Zernike Institute for Advanced Materials' research lines.

Our activities cover both **Bachelor** and **Master** levels in the field of Physics and Chemistry. But, since it is our mission to *train a new generation of researchers in cross-disciplinary approaches to research and equip them with the diverse skills required by modern science*, we also have programs breaking the traditional boundaries between disciplines. We are very proud on our interdisciplinary Top Master program Nanoscience in this regard, which was rated the best Master program of the Netherlands the last four years in a row by national study guides. Next to this, we also offer the High Tech Systems and Materials Honours Master, which tackles real-life product development challenges in the same interdisciplinary fashion.

Additionally to the Bachelor and Master education, the Zernike Institute has the responsibility to train approximately 150 current **PhD** students to become independent, high level scientists. The main component is 'hands-on training', working side-by-side with the research staff of the institute.

Please contact us via zernike@rug.nl and we assist you in finding the next challenge for your career.

Are you interested in joining our team for a Bachelor-, Master-, or PhD-project? Check our website http://www.rug.nl/research/zernike/education/ on the different educational programs or directly approach us via <u>zernike@rug.nl</u>.

groningen

faculty of methematics and natural sciences anreake instituto for schemood materials

Top Master & Graduate Programme in Nanoscience

Top Master Programme in Nanoscience
 PhD Programme in Nanoscience

Application deadlines

1 February Non-EU students and full scholarships

1 May EU students

(some years postdeadline applications are possible)

2-year (full) scholarships for part of the admitted master students

-

Organized by the Zernike Institute for Advanced Materials

The Top Master Programme in NanoScience is a 2-year interdisciplinary research master that offers dedicated courses in both physics and chemistry (with links to bio/life sciences), and 4 individual research projects that are supervised by top researchers.

External reviews assessed the programme as excellent on all aspects, and it has been ranked as one of the best programmes in the world.

The programme aims to offer 4-year PhD research positions with full scholarship to all its successful participants .

Visit www.rug.nl/zernike \rightarrow Education \rightarrow Top Master Nanoscience

Publish More. Worry Less.

www.coherent.com

Whether you are working at 1 kHz or 1 MHz, Coherent's femtosecond amplifiers operate at extraordinary levels of quality, accuracy and repeatability.

Our HALT designed and HASS verified products offer a lifetime of reliability.

Join the Industrial Revolution in Ultrafast Science.

Superior Reliability & Performance

High flux MIR OPCPA

twin STARZZ

for 2D-IR Spectroscopy Molecular science

Sub 100fs tunable MIR pulses at 100kHz Dual ps and fs mode within a click

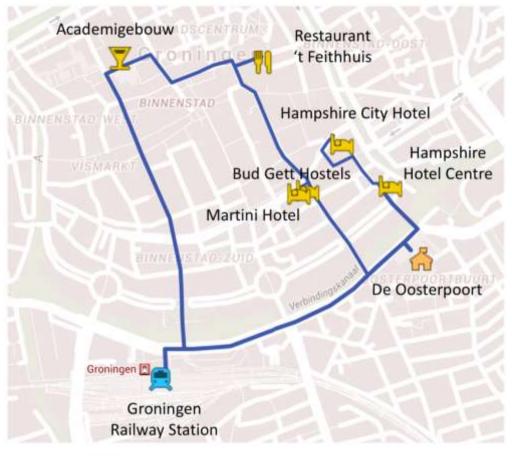
Signal & idler simultaneous tunable outputs Up to 20W average power at 100kHz Wavelength extensions available High rep-rate industrial-grade Yb pump All collinear geometry

FASTLITE ultrafast expertise combined with Ytterbium industrial-grade lasers - www.fastlite.com -

Ipskamp Printing, expert in theses printing!

thesis and more

Postbus 333 7500 AH Enschede info@ipskampprinting.nl www.ipskampprinting.nl Auke Veerstraat 145 7547 PH Enschede T. 053 482 62 62 Science Park 402 1098 XH Amsterdam T. 020 428 77 00 Bergselaan 169 B 3037 BJRotterdam T. 010 467 25 39 Sint Annastraat 99 6524 EK Nijmegen T. 024 360 09 58



Femtosecond Pulse Acquisition Spectrometer

Infrared Systems Development Corporation Winter Park, FL 32792 www.infraredsystems.com

Map of Groningen with Locations

Registration

Tuesday 28 June 15:30-18:00 Wednesday 29 June 8:00 Address: "De Oosterpoort", Trompsingel 27

Thursday 30 June 17:00-18:00 Address: Departure from "De Oosterpoort", Trompsingel 27

Reception 🝸

Tuesday 28 June 18:00-19:00 Address: Academigebouw, Broerstraat 5

Conference dinner

Thursday 30 June 19:00 Address: 't Feithhuis, Martinikerkhof 10

Local Organizers

Thomas la Cour Jansen (co-chair, *University of Groningen*) mob +31 64 4464980 Maxim S. Pshenichnikov (co-chair, *University of Groningen*) mob. +31 65 4992981 Huib J. Bakker (*AMOLF*) Rienk van Grondelle (*VU University Amsterdam*) Jasper Knoester (*University of Groningen*) Sander Woutersen (*University of Amsterdam*)

CMDS 2016 International Organizing Committee

John C. Wright (Chair), University of Wisconsin, Madison Minhaeng Cho, Korea University Thomas Elsaesser, Max-Born-Institute, Berlin Peter Hamm, University of Zurich Thomas la Cour Jansen, University of Groningen David Jonas, University of Colorado, Boulder Munira Khalil, University of Vashington, Seattle R. J. Dwayne Miller, University of Toronto and CFEL, Hamburg Shaul Mukamel, University of California, Irvine Yoshitaka Tanimura, Kyoto University Andrei Tokmakoff, University of Chicago Keisuke Tominaga, Kobe University Martin T. Zanni, University of Wisconsin, Madison

Student Support Team

Anna S. Bondarenko, Oleg Kozlov, Ana V. Cunha, Evgeniia Salamatova, Tenzin Kunsel, Björn Kriete, Marwa Farag, Artur Mannanov

Web Design

Foppe de Haan

Logo Design Chungwen Liang

Booklet Design Anna S. Bondarenko, Oleg Kozlov, Björn Kriete

Secretary Annelien Blanksma

Conference Support

Groningen Congres Bureau

